
Γιώργος Μανής
Επίκουρος Καθηγητής

Τμήματος Μηχανικών Η/Υ και Πληροφορικής
Mάρτιος 2015

Python

Η Python δημιουργήθηκε το 1990

Ο κύριος στόχος της είναι η αναγνωσιμότητα του κώδικά της και η
ευκολία χρήσης της.

έχει πολλές βιβλιοθήκες που διευκολύνουν ιδιαίτερα αρκετές
συνηθισμένες εργασίες

διακρίνεται για την ταχύτητα εκμάθησης της

Πηγή: Βικιπαίδεια

Python – Ανοικτό Λογισμικό

Η Python αναπτύσσεται ως ανοιχτό λογισμικό

Η διαχείρισή της γίνεται από τον μη κερδοσκοπικό οργανισμό
Python Software Foundation

Ο κώδικας διανέμεται με την άδεια Python Software Foundation
License η οποία είναι συμβατή με την GPL.

Python – Ανοικτό Λογισμικό

Ο κώδικας διανέμεται με την άδεια Python Software Foundation
License η οποία είναι συμβατή με την GPL. Οι χρήστες μπορουν:
 να τρέξουν ένα πρόγραμμα για οποιοδήποτε λόγο.
 να μελετήσουν τη λειτουργία ενός προγράμματος και να το

τροποποιήσουν
 να διανείμουν αντίγραφα του προγράμματος έτσι ώστε να

βοηθήσουν τον πλησίον
 να βελτιώσουν το πρόγραμμα και να προσφέρουν τις βελτιώσεις

στο κοινό, έτσι ώστε να ωφεληθεί ολόκληρη η κοινότητα

Python 

Το όνομα της γλώσσας προέρχεται από την ομάδα Άγγλων κωμικών
Μόντυ Πάιθον.

Εκδόσεις της Python

Αρχικά, η Python ήταν γλώσσα σεναρίων που χρησιμοποιούνταν στο
λειτουργικό σύστημα Amoeba, ικανή και για κλήσεις συστήματος.

Η Python 2.0 κυκλοφόρησε το 2000

Το 2008 κυκλοφόρησε η έκδοση 3.0. Πολλά από τα καινούργια
χαρακτηριστικά αυτής της έκδοσης έχουν μεταφερθεί στις εκδόσεις
2.6 και 2.7 που είναι προς τα πίσω συμβατές.

Η Python 3 είναι ιστορικά η πρώτη γλώσσα προγραμματισμού που
σπάει την προς τα πίσω συμβατότητα με προηγούμενες εκδόσεις

Python

η Python είναι εξαιρετικά δημοφιλής γλώσσα προγραμματισμού

μπορείς να κάνεις εύκολα και γρήγορα ανάπτυξη εφαρμογών

Είναι της φιλοσοφίας του ανοικτού κώδικα

έχει αναπτυχθεί ήδη πολύ λογισμικό σε Python

Υπάρχει μεγάλος αριθμός από διαθέσιμες βιβλιοθήκες

μπορεί κανείς να τη χρησιμοποιήσει ως γλώσσα διαδικασιακού ή και
αντικειμενοστρεφούς προγραμματισμού

Διαδραστικός Διερμηνευτής

>>> print("Hello, world!“)

Hello, world!

>>> 2+2

4

>>> 1/2

0.5

>>> 4/2

2.0

Ακέραιοι και Πραγματικοί

Οι αριθμοί 3 και 5 είναι ακέραιοι.

Οι αριθμοί 3.5 και 5.0 είναι αριθμοί κινητής υποδιαστολής.

>>>1//2

0 (ακέραια διαίρεση)

>>>1.0//2.0

0.0

>>>1.0//2

0.0

Διαίρεση και Υπόλοιπο

>>>10%3

1 (υπόλοιπο διαίρεσης)

>>>2.75/0.5

5.5

>>>2.75//0.5

5.0

>>>2.75%0.5

0.25

Ύψωση σε Δύναμη

>>>2**3

8 (Ύψωση σε δύναμη)

>>>-3**2

-9

>>>(-3)**2

9

Αριθμητικά Συστήματα

AF στο δεκαεξαδικό σύστημα ισούται με 10*16+15=175 στο δεκαδικό

>>>0xAF

175

10 στο οκταδικό σύστημα ισούται με 1*8+0=8 στο δεκαδικό σύστημα

>>>0o10

8

Μεταβλητές

>>>x=3 (απόδοση τιμής)

>>>x*2

6

>>>3*2

6

>>>print(3*2)

6

Input

>>>input(“How old are you? “)

How old are you? 42

’42’

>>>x=input(“x: “)

x: 34

>>>x

’34’

Input

>>>x=int(input(“x: “))

x: 34

>>>y=float(input(“y: “))

y: 42

>>>print(x*y)

1428.0

Συναρτήσεις

>>>2**3

8

>>>pow(2,3)

8

>>>10+pow(2,3*5)/3.0

10932.666666666666

>>>abs(-10)

10

>>>round(3.8)

4

Modules

Το “math” είναι module.

>>>import math

>>>math.floor(3.8)

3

Μπορώ να εισαγάγω συγκεκριμένες συναρτήσεις από ένα module:

>>>from math import sqrt

>>>sqrt(9)

3.0

Μιγαδικοί αριθμοί

>>>sqrt(-1)

Traceback (most recent call last):

File "<pyshell#74>", line 1, in <module>

sqrt(-1)

ValueError: math domain error

Μιγαδικοί αριθμοί

>>>import cmath

>>>cmath.sqrt(-1)

1j

>>>(1+3j)*(9+4j)

(-3+31j)

Αλφαριθμητικά (strings)

Μονά και διπλά εισαγωγικά είναι το ίδιο

>>>”Hello, world!”

‘Hello, world!’

>>>”Let’s go!”

“Let’s go!”

Εναλλακτικά:

>>>’Let\’s go!’

“Let’s go!”

Συνένωση αλφαριθμητικών

>>> “Hello, ” + “world!”

‘Hello, world!’

Εναλλακτικά:

>>> “Hello, ” “world!”

>>>x=“Hello, ”

>>>y=“world!”

>>>x+y

‘Hello, world!’

Δομές δεδομένων

Οι βασικές δομές δεδομένων στην Python είναι οι ακολουθίες
(sequences).

Τα κύρια είδη ακολουθιών είναι οι:
 Λίστες (lists)
 Πλειάδες (tuples)

Η βασική τους διαφορά είναι ότι οι λίστες μπορούν να μεταβληθούν
ενώ οι πλειάδες όχι.

Τα αλφαριθμητικά (strings) είναι επίσης ακολουθίες.

Λίστες

Έστω ότι θέλουμε να φτιάξουμε μία βάση δεδομένων που να
περιλαμβάνει ονόματα και ηλικίες.

>>>george=[‘Γιώργος Μανής’, 42]

>>>peter=[‘Πέτρος Παπαδόπουλος’, 50]

>>>database=[george, peter]

>>>database

[[‘Γιώργος Μανής’, 42], [‘Πέτρος Παπαδόπουλος’, 50]]

Δείκτες θέσης (indexing)

>>>greeting=‘Hello’

>>>greeting[0]

‘H’

Οι ακολουθίες στην Python ξεκινούν από το στοιχείο 0.

>>>greeting[-1]

‘o’

Αρνητικός δείκτης θέσης μετράει από τα δεξιά.

>>>‘Hello’[1]

‘e’

Δείκτες θέσης (indexing)

>>> fourth = input('Year: ')[3]

Year: 2005

>>> fourth

'5'

Slicing

>>>numbers=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>>numbers[3:6]

[4, 5, 6]

Ο πρώτος αριθμός είναι ο δείκτης θέσης του πρώτου στοιχείου, ενώ
δεύτερος αριθμός είναι ο δείκτης θέσης του επόμενου στοιχείου
από το τελευταίο που θέλουμε να συμπεριλάβουμε.

>>>numbers[0:1]

[1]

Slicing

>>>numbers=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Αν μετρήσω τα στοιχεία από τα δεξιά:

>>>numbers[-3:-1]

[8, 9]

Έτσι δεν μπορώ να προσπελάσω το τελευταίο στοιχείο:

>>>numbers[-3:0]

[]

Slicing

Μπορώ να κάνω το εξής:

>>>numbers[-3:]

[8, 9, 10]

Επίσης:

>>>numbers[:3]

[1, 2, 3]

>>>numbers[:]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Βήμα

>>>numbers[0:10:1]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>>numbers[0:10:2]

[1, 3, 5, 7, 9]

>>>numbers[3:6:3]

[4]

>>>numbers[::4]

[1, 5, 9]

Αρνητικό βήμα
>>>numbers=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>>numbers[8:3:-1]
[9, 8, 7, 6, 5]
>>>numbers[10:0:-2]
[10, 8, 6, 4, 2]
>>>numbers[0:10:-2]
[]
>>>numbers[::-2]
[10, 8, 6, 4, 2]
>>>numbers[5::-2]
[6, 4, 2]
>>>numbers[:5:-2]
[10, 8]

Πρόσθεση ακολουθιών
>>>[1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>>’Hello, ‘ + ‘world!’

‘Hello, world’

>>>[1, 2, 3] + ‘world!’

Traceback (most recent call last):

 File "<pyshell#31>", line 1, in <module>

 [1, 2, 3] + 'world!'

TypeError: can only concatenate list (not "str") to list

Πολλαπλασιασμός

>>>’python’ * 5

'pythonpythonpythonpythonpython‘

>>>[42] * 10

[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

Λίστες

Άδεια λίστα και None

Άδεια λίστα: []

None: Χρησιμοποιείται όταν θέλουμε μία λίστα π.χ. με 10 στοιχεία
αλλά δεν έχουμε ακόμα αναθέσει τιμές:

>>>sequence = [None] * 10

>>>sequence

[None, None, None, None, None, None, None, None, None, None]

Ιδιότητα του μέλους

>>>permissions=‘rw’

>>>’w’ in permissions

True

>>>’x’ in permissions

False

Οι True και False είναι Boolean τιμές:
 True: Αληθές
 False: Ψευδές

Ιδιότητα του μέλους

>>> users = [‘χρήστης1', ‘χρήστης3', ‘χρηστης9']

>>> input('Enter your user name: ') in users

Enter your user name: mlh

True

>>> subject = '$$$!!! $$$'

>>> '$$$' in subject

True

παράθεση

>>> x
[1, 5, 4, 7, 8, 9]
>>> y
[7, 8, 9]
>>> x+y
[1, 5, 4, 7, 8, 9, 7, 8, 9]
>>> a=x+y
>>> a
[1, 5, 4, 7, 8, 9, 7, 8, 9]
>>> x
[1, 5, 4, 7, 8, 9]
>>> y
[7, 8, 9]

η συνάρτηση list

δημιουργία λίστας

>>> list ('Hello')

['H', 'e', 'l', 'l', 'o']

>>>

>>> x=list('Hello')

>>> x

['H', 'e', 'l', 'l', 'o']

>>>

min, max, len

>>> x=[3,5,2,8,7]

>>> min(x)

2

>>> max(x)

8

>>> len(x)

5

>>>

τροποποίηση στοιχείων λίστας

>>> x=[1,2,3]

>>> x

[1, 2, 3]

>>> x[2]=-1

>>> x

[1, 2, -1]

>>>

διαγραφή στοιχείων λίστας

>>> x=[1,2,3]

>>> del x[1]

>>> x

[1, 3]

>>> del x[0]

>>> del x[0]

>>> x

[]

>>>

αντικατάσταση μέρους λίστας

>>> list = [1,2,3,4,5,6]

>>> list[3:]=[7,8,9]

>>> list

[1, 2, 3, 7, 8, 9]

>>> list[1:2]=[10,11,12,13]

>>> list

[1, 10, 11, 12, 13, 3, 7, 8, 9]

αντικατάσταση μέρους λίστας

>>> list[1:1]=[20,21,22]

>>> list

[1, 20, 21, 22, 10, 11, 12, 13, 3, 7, 8, 9]

>>> list[4:]=[]

>>> list

[1, 20, 21, 22]

>>>

append

>>> lst = [1, 2, 3]

>>> lst.append(4)

>>> lst

[1, 2, 3, 4]

count

>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to')

2

>>> x = [[1, 2], 1, 1, [2, 1, [1, 2]]]

>>> x.count(1)

2

>>> x.count([1, 2])

1

index

>>> a = [1, 5, 4, 7, 8, 9, 7, 8, 9,]

>>> a.index(7)

3

>>> a.index(9)

5

insert

>>> a = [1, 5, 4, 7, 8, 9, 7, 8, 9, -1]

>>>

>>> a.insert(2,10)

>>> a

[1, 5, 10, 4, 7, 8, 9, 7, 8, 9, -1]

pop

>>> a = [1, 5, 10, 4, 7, 8, 9, 7, 8, 9, -1]
>>> a.pop()
-1
>>> a
[1, 5, 10, 4, 7, 8, 9, 7, 8, 9]
>>> a.pop(0)
1
>>> a
[5, 10, 4, 7, 8, 9, 7, 8, 9]
>>> a.pop(2)
4
>>> a
[5, 10, 7, 8, 9, 7, 8, 9]

remove

>>> a

[5, 10, 7, 8, 9, 7, 8, 9]

>>>

>>> a.remove(9)

>>> a

[5, 10, 7, 8, 7, 8, 9]

reverse

>>> x = [1, 2, 3]
>>> x.reverse()
>>> x
[3, 2, 1]

>>> x = [1, 2, 3]
>>> list(reversed(x))
[3, 2, 1]
>>> x
[1, 2, 3]

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a.extend(b)
>>> a
[1, 2, 3, 4, 5, 6]

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a + b
[1, 2, 3, 4, 5, 6]
>>> a
[1, 2, 3]

extend

sort

>>> x = [4, 6, 2, 1, 7, 9]

>>> x.sort()

>>> x

[1, 2, 4, 6, 7, 9]

>>> x = [4, 6, 2, 1, 7, 9]

>>> y = x.sort()

>>> print (y)

None

sort

>>> x = [4, 6, 2, 1, 7, 9]

>>> y = x[:]

>>> y.sort()

>>> x

[4, 6, 2, 1, 7, 9]

>>> y

[1, 2, 4, 6, 7, 9]

sort

>>> y = x

>>> y.sort()

>>> x

[1, 2, 4, 6, 7, 9]

>>> y

[1, 2, 4, 6, 7, 9]

sort

>>> x = [4, 6, 2, 1, 7, 9]

>>> y = sorted(x)

>>> x

[4, 6, 2, 1, 7, 9]

>>> y

[1, 2, 4, 6, 7, 9]

Πλειάδες

Πλειάδες

Οι πλειάδες δημιουργούνται και δεν τροποποιούνται στη συνέχεια

>>> 1, 2, 3

(1, 2, 3)

>>> ()

()

Δημιουργία από συνάρτηση

>>> tuple([1, 2, 3])

(1, 2, 3)

>>> tuple('abc')

('a', 'b', 'c')

>>> tuple((1, 2, 3))

(1, 2, 3)

Λειτουργίες σε μία πλειάδα

>>> x = 1, 2, 3

>>> x[1]

2

>>> x[0:2]

(1, 2)

Χρησιμότητα ?

Θα μπορούσαμε να χρησιμοποιούσαμε και λίστες αντί τις πλειάδες

Κάποιες λειτουργίες όμως που θα δούμε αργότερα τις
χρησιμοποιούν

Λεξικά

Λεξικά

χρησιμοποιούν κλειδιά και όχι απλούς δείκτες

η αναζήτηση βασίζεται στα κλειδιά, τα οποία είναι πλειάδες

π.χ.

phonebook =

{‘Αλίκη': '2341', ‘Μπέτυ': '9102', ‘Σεσίλ': '3258'}

Συνάρτηση dict

>>> items = [('name', ‘Γιώργος'), ('age', 42)]
>>> d = dict(items)
>>> d
{'age': 42, 'name': ‘Γιώργος'}
>>> d['name']
‘Γιώργος‘
ή
d = dict(name=‘Γιώργος', age=42)
>>> d
{'age': 42, 'name': ‘Γιώργος'}

Βασικές Λειτουργίες

>>> x = []

>>> x[42] = ‘τεστ'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: list assignment index out of range

>>> x = {}

>>> x[42] = ‘τεστ'

>>> x

{42: ‘τεστ'}

clear

>>> d = {}

>>> d['name'] = ‘Γιώργος'

>>> d['age'] = 42

>>> d

{'age': 42, 'name': ‘Γιώργος'}

>>> returned_value = d.clear()

>>> d

{}

>>> print (returned_value)

None

fromkeys

>>> {}.fromkeys(['name', 'age'])

{'age': None, 'name': None}

>>> dict.fromkeys(['name', 'age'])

{'age': None, 'name': None}

>>> dict.fromkeys(['name', 'age'], '(unknown)')

{'age': '(unknown)', 'name': '(unknown)'}

get

>>> d = {}
>>> print (d['name'])
Traceback (most recent call
last):
File "<stdin>", line 1, in ?
KeyError: 'name‘

>>> print (d.get('name'))
None

>>> d.get('name', 'N/A')
‘N/A‘

>>> d['name'] = 'Eric'
>>> d.get('name')
'Eric'

has_key

>>> d = {}

>>> d.has_key('name')

0

>>> d['name'] = 'Eric'

>>> d.has_key('name')

1

items

>>> d = {'title': 'Python Web Site', 'url': 'http://www.python.org',
'spam': 0}

>>> d.items()

[('url', 'http://www.python.org'), ('spam', 0), ('title', 'Python Web
Site')]

pop

>>> d = {'x': 1, 'y': 2}

>>> d.pop('x')

1

>>> d

{'y': 2}

>>> d = {'x': 1, 'y': 2}

>>> d.pop('x')

1

>>> d

{'y': 2}

popitem

>>> d

{'url': 'http://www.python.org', 'spam': 0, 'title': 'Python Web Site'}

>>> d.popitem()

('url', 'http://www.python.org') τυχαίο

>>> d

{'spam': 0, 'title': 'Python Web Site'}

update

>>> d = {

'title': 'Python Web Site',

'url': 'http://www.python.org',

'changed': 'Mar 14 22:09:15 MET 2005'

}

>>> x = {'title': 'Python Language Website'}

>>> d.update(x)

>>> d

{'url': 'http://www.python.org', 'changed': 'Mar 14 22:09:15 MET
2005‘, 'title': 'Python Language Website'}

Δομές Έλέγχου

Μπλοκ κώδικα

Ένα μπλοκ κώδικα είναι μία ομάδα εντολών η οποία θα εκτελεστεί
αν μία συνθήκη είναι αληθής ή θα εκτελεστεί πολλές φορές (βρόχος)

Στην Python, το μπλοκ δημιουργείται γράφοντας το αντίστοιχο μέρος
του κώδικα σε εσοχή (βάζοντας διαστήματα μπροστά).

Προτείνονται τέσσερα διαστήματα.

Μπλοκ κώδικα

this is a line

this is another line:

 this is another block

 continuing the same block

 the last line of this block

phew, there we escaped the inner block

Η αρχή του μπλοκ ορίζεται με «:»

Συνθήκες

Είχαμε μιλήσει για Boolean τιμές.

True, False

Στην Python, οι παρακάτω τιμές θεωρούνται ισοδύναμες με False:

False None 0 "" () [] {}

Οποιαδήποτε άλλη τιμή θεωρείται ισοδύναμη με True.

True και False

Βασικά, True σημαίνει 1 και False σημαίνει 0.
>>> True
True
>>> False
False
>>> True == 1
True
>>> False == 0
True
>>> True + False + 42
43

Τύπος bool

Οι τιμές True και False ανήκουν στον τύπο bool.

bool('I think, therefore I am')

True

>>> bool(42)

True

>>> bool('')

False

>>> bool(0)

False

Η εντολή if

name = input('What is your name? ')

if name.endswith('Gumby'):

 print('Hello, Mr. Gumby‘)

elif και else

num = eval(input('Enter a number: '))

if num > 0:

 print('The number is positive')

elif num < 0:

 print('The number is negative')

else:

 print('The number is zero')

Φωλιασμένα μπλοκ

name = input('What is your name? ')

if name.endswith('Gumby'):

 if name.startswith('Mr.'):

 print('Hello, Mr. Gumby')

 elif name.startswith('Mrs.'):

 print('Hello, Mrs. Gumby')

 else:

 print('Hello, Gumby')

else:

 print('Hello, stranger')

Τελεστές σύγκρισης
x == y το x ισούται με το y.

x < y το x είναι μικρότερο από το y.

x > y το x είναι μεγαλύτερο από το y.

x >= y το x είναι μεγαλύτερο ή ίσο από το y.

x <= y το x είναι μικρότερο ή ίσο από το y.

x != y το x είναι διάφορο του y.

x is y x και y είναι το ίδιο αντικείμενο.

x is not y x και y είναι διαφορετικά αντικείμενα.

x in y το x είναι μέλος της ακολουθίας y.

x not in y το x δεν είναι μέλος της ακολουθίας y.

Τελεστές σύγκρισης

>>> "foo" == "foo"

True

>>> "foo" == "bar"

False

>>> "foo" = "foo"

SyntaxError: can't assign to literal

Ο τελεστής is (τελεστής ταυτότητας)

>>> x = y = [1, 2, 3]

>>> z = [1, 2, 3]

>>> x == y

True

>>> x == z

True

>>> x is y

True

>>> x is z

False

Ο τελεστής in

name = input('What is your name? ')

if 's' in name:

 print('Your name contains the letter "s".‘)

else:

 print('Your name does not contain the letter "s".‘)

Σύγκριση αλφαριθμητικών και
ακολουθιών

>>> "alpha" < "beta"

True

[1, 2] < [2, 1]

True

Boolean τελεστές

number = int(input(‘Δώσε μου αριθμό ανάμεσα στο 1 και το 10: '))

if number <= 10:

 if number >= 1:

 print ‘Σωστά!'

 else:

 print ‘Λάθος!'

else:

 print ‘Λάθος!'

Boolean τελεστές

Καλύτερα:

number = int(input(' Δώσε μου αριθμό ανάμεσα στο 1 και το 10 : '))

if number <= 10 and number >= 1:

 print ‘Σωστά!'

else:

 print ‘Λάθος!‘

Ακόμα καλύτερα:

if 1<=number<=10: …

Boolean τελεστές

and, or, not όσο πολύπλοκα θέλουμε

if ((cash > price) or customer_has_good_credit) and not out_of_stock:

give_goods()

Ο βρόχος while

x = 1

while x <= 100:

 print(x)

 x += 1

name = ''

while not name:

 name = input('Please enter your name: ')

print('Hello, %s!' % name)

Ο βρόχος for
words = ['this', 'is', 'an', 'ex', 'parrot']

for word in words:

 print(word)

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for number in numbers:

 print(number)

range

for number in range(1,101):

 print(number)

>>>list(range(0,10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Το δεύτερο όριο δεν συμπεριλαμβάνεται.

Επαναλήψεις σε λεξικά

d = {'x': 1, 'y': 2, 'z': 3}

for key in d:

 print(key, 'corresponds to', d[key])

Εναλλακτικά:

d = {'x': 1, 'y': 2, 'z': 3}

for key, value in d.items():

 print(key, 'corresponds to', value)

Παράλληλες επαναλήψεις

names = [‘anne', 'beth', 'george', 'damon']

ages = [12, 45, 32, 102]

for i in range(len(names)):

 print(names[i], 'is', ages[i], 'years old')

Η συνάρτηση zip

>>>list(zip(names,ages))

[('anne', 12), ('beth', 45), ('george', 32), ('damon', 102)]

>>>list(zip(range(5), range(100000000)))

[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

Παράλληλες επαναλήψεις με zip

names = ['anne', 'beth', 'george', 'damon']

ages = [12, 45, 32, 102]

for name, age in zip(names, ages):

 print(name, 'is', age, 'years old')

Αντικατάσταση αλφαριθμητικού

for string in strings:

 if 'xxx' in string:

 index = strings.index(string)

 strings[index] = '[censored]’

Εναλλακτικά:

index = 0

for string in strings:

 if 'xxx' in string:

 strings[index] = '[censored]'

 index += 1

reversed και sorted

>>> sorted([4, 3, 6, 8, 3])

[3, 3, 4, 6, 8]

>>> sorted('Hello, world!')

[' ', '!', ',', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']

>>> list(reversed('Hello, world!'))

['!', 'd', 'l', 'r', 'o', 'w', ' ', ',', 'o', 'l', 'l', 'e', 'H']

>>> ''.join(reversed('Hello, world!'))

'!dlrow ,olleH'

Η εντολή break

Θέλω να βρω το μεγαλύτερο τέλειο τετράγωνο μικρότερο του 100.

from math import sqrt

for n in range(99, 0, -1):

 root = sqrt(n)

 if root == int(root):

 print(n)

 break

Η break μας βγάζει έξω από το βρόχο

range με βήμα

>>>list(range(99, 0, -1))

[99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82,
81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63,
62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44,
43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25,
24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4,
3, 2, 1]

>>>list(range(0,10,2))

[0, 2, 4, 6, 8]

Ο ιδιωματισμός while True/break

word = 'dummy'

while word:

 word = input('Please enter a word: ')

 # do something with the word:

 print('The word was ' + word)

Χρειαζόμαστε την αρχική τιμή στη word.

O ιδιωματισμός while True/break

Εναλλακτικά:

word = input('Please enter a word: ')

while word:

 # do something with the word:

 print('The word was ' + word)

 word = input('Please enter a word: ')

O ιδιωματισμός while True/break

Με χρήση του while True/break:

while True:

 word = input('Please enter a word: ')

 if not word: break

 # do something with the word:

 print('The word was ' + word)

Χρήση Boolean σημαίας

broke_out = False

for x in seq:

 do_something(x)

 if condition(x):

 broke_out = True

 break

 do_something_else(x)

if not broke_out:

 print "I didn't break out!"

Χρήση else στη for

from math import sqrt

for n in range(99, 81, -1):

 root = sqrt(n)

 if root == int(root):

 print(n)

 break

else:

 print("Didn't find it!")

Περισσότερα για λίστες

>>> [x*x for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> [x*x for x in range(10) if x % 3 == 0]

[0, 9, 36, 81]

>>> [(x, y) for x in range(3) for y in range(3)]

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

Περισσότερα για λίστες

>>> girls = ['alice', 'bernice', 'clarice']

>>> boys = ['chris', 'arnold', 'bob']

>>> [b+'+'+g for b in boys for g in girls if b[0] == g[0]]

['chris+clarice', 'arnold+alice', 'bob+bernice']

Η εντολή pass

Δεν κάνει τίποτα!

if name == 'Ralph':

print 'Welcome!'

elif name == 'Enid':

Not finished yet...

pass

elif name == 'Bill Gates':

print 'Access Denied'

Παραδείγματα

Ύψωση σε δύναμη

x = int(input('Dose ti vasi: '))

y = int(input('Dose ti dynami: '))

value = 1

for i in range(0, y):

 value *= x

print('%d eis tin %d = %d' % (x, y, value))

Παραγοντικό

! 1 2 3n n= × × L

Παραγοντικό ενός αριθμού

x = int(input('Dose mou ton arithmo: '))

y = 1

for i in range(1,x+1):

 y *= i

print('To paragontiko tou %d einai %d' % (x,y))

Υπολογισμός ψηφίων ακέραιου
αριθμού

Παράδειγμα:

235=2*100+3*10+5

Πρώτο ψηφίο: 235%10=5

235//10=23

Δεύτερο ψηφίο:

23%10=3

23//10=2

Τρίτο ψηφίο: 2%10=2

2//10=0

Υπολογισμός αθροίσματος ψηφίων
ακέραιου αριθμού

n = int(input('Dose mou ton arithmo: '))

dsum = 0

while n>0:

 dsum += n%10

 n//=10

print('To athroisma ton psifion tou arithmou einai %d' % dsum)

Πίνακες

Πίνακες

Μπορούμε να χρησιμοποιήσουμε λίστες ως πίνακες.

Μονοδιάστατος πίνακας:

Α=[1, 2, 3, 4, 5]

Διδιάστατος πίνακας:
Β=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Κάθε γραμμή του πίνακα είναι μία λίστα.

Αρχικοποίηση πινάκων

Μονοδιάστατος πίνακας

Ν=5

Α=[0]*Ν

Εναλλακτικά:

Α=[0 for i in range(N)]

Αντί για 0 μπορούμε να βάλουμε και None.

Αρχικοποίηση πινάκων

Δισδιάστατος πίνακας

Ν=3

pinakas=[[0 for i in range(N)] for i in range(N)]

pinakas

0
pinakas[0][0] pinakas[0][1] pinakas[0][2] Προσοχή: Είναι pinakas[i][j] και

όχι pinakas[i, j]
1

pinakas[1][0] pinakas[1][1] pinakas[1][2]

2 pinakas[2][0] pinakas[2][1] pinakas[2][2]

0 1 2

Πρόσθεση πινάκων

N = 3

A = [[0.0 for j in range(N)] for i in range(N)]

B = [[0.0 for j in range(N)] for i in range(N)]

C = [[0.0 for j in range(N)] for i in range(N)]

for i in range(N):

 for j in range(N):

 A[i][j] = float(input('A[%d][%d]: ' % (i, j)))

 for i in range(N):

 for j in range(N):

B[i][j] = float(input('B[%d][%d]: ' % (i, j)))

Πρόσθεση πινάκων (συνέχεια)

for i in range(N):

 for j in range(N):

 C[i][j] = A[i][j] + B[i][j]

for i in range(N):

 for j in range(N):

 print('C[%d][%d]:%7.2f ' % (i, j, C[i][j]), end = '')

 print('')

Πολλαπλασιασμός πινάκων NxN

BAC 







1

0

],[],[],[
N

k

jkBkiAjiC

Πολλαπλασιασμός πινάκων

N = 3

A = [[0.0 for j in range(N)] for i in range(N)]

B = [[0.0 for j in range(N)] for i in range(N)]

C = [[0.0 for j in range(N)] for i in range(N)]

for i in range(N):

 for j in range(N):

 A[i][j] = float(input('A[%d][%d]: ' % (i, j)))

for i in range(N):

 for j in range(N):

 B[i][j] = float(input('B[%d][%d]: ' % (i, j)))

Πολλαπλασιασμός πινάκων (συνέχεια)

for i in range(N):

 for j in range(N):

 thisElement = 0.0

 for k in range(N):

 thisElement += A[i][k]*B[k][j]

 C[i][j] = thisElement

for i in range(N):

 for j in range(N):

 print('C[%d][%d]:%7.2f ' % (i, j, C[i][j]), end = '')

 print('‘)

Ανάστροφος πίνακα
N = 3

A = [[0.0 for j in range(N)] for i in range(N)]

C = [[0.0 for j in range(N)] for i in range(N)]

for i in range(N):

 for j in range(N):

 A[i][j] = float(input('A[%d][%d]: ' % (i, j)))

for i in range(N):

 for j in range(N):

 C[i][j] = A[j][i]

Ανάστροφος πίνακα (συνέχεια)

for i in range(N):

 for j in range(N):

 print('C[%d][%d]:%7.2f ' % (i, j, C[i][j]), end = '')

 print('')

Συναρτήσεις

Hello world

>>> def helloWorld():

print('Hello World')

>>> helloWorld()

Hello World

>>>

Hello world

>>> def hello(name):

return 'Hello, '+name+' !'

>>> hello ('world')

'Hello, world !'

>>> hello ('George')

'Hello, George !'

>>>

Fibonacci numbers

fib(0) = 1

fib(1) = 1

fib(n)=fib(n-1)+fib(n-2)

Fibonacci numbers

>>> def fibs(num):

result = [0, 1]

for i in range(num-2):

result.append(result[-2] + result[-1])

return result

>>> fibs(10)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

>>>

Τεκμηρίωση

>>> def hello(name):

'prints hello, a comma and a name following them'

return 'Hello, '+name+' !'

>>> hello('George')

'Hello, George !'

>>> hello.__doc__

'prints hello, a comma and a name following them'

>>>

Τεκμηρίωση

>>> from math import sqrt

>>> help(sqrt)

Help on built-in function sqrt in module math:

sqrt(...)

 sqrt(x)

 Return the square root of x.

Κάτι σαν συναρτήσεις …

>>> def OK():
print ('OK');
return
print ('????');

>>> OK()
OK
>>> x=OK()
OK
>>> x
>>>

Κάτι σαν συναρτήσεις …

>>> def OK():
print ('OK');
return
print ('????');

>>> OK()
OK
????
>>> x=OK()
OK
????
>>> x
>>>

Παράμετροι

def hello(name):

return 'Hello, '+name+' !'

>>> x='George'

>>> hello(x)

'Hello, George !'

>>> x

'George'

Παράμετροι

def hello(name):
name='123'
return 'Hello, '+name+' !'

>>> x='George'
>>> hello(x)
'Hello, 123 !'
>>> x
'George'
>>>

Παράμετροι

>>> def change(n):

n[0] = 'Mr. Gumby'

>>> names = ['Mrs. Entity', 'Mrs. Thing']

>>> change(names)

>>> names

['Mr. Gumby', 'Mrs. Thing']

Παράμετροι

def hello_1(greeting, name):

print '%s, %s!' % (greeting, name)

def hello_2(name, greeting):

print '%s, %s!' % (name, greeting)

>>> hello_1('Hello', 'world')

Hello, world!

>>> hello_2('Hello', 'world')

Hello, world!

Παράμετροι

>>> hello_1(greeting='Hello', name='world')

Hello, world!

>>> hello_1(name='world', greeting='Hello')

Hello, world!

The names do, however (as you may have gathered):

>>> hello_2(greeting='Hello', name='world')

world, Hello!

Παράμετροι

Πιο ευανάγνωστος κώδικας

>>> store('Mr. Brainsample', 10, 20, 13, 5)

>>> store(patient='Mr. Brainsample',

hour=10, minute=20, day=13, month=5)

Παράμετροι

def hello_3(greeting='Hello', name='world'):

print '%s, %s!' % (greeting, name)

>>> hello_3()

Hello, world!

>>> hello_3('Greetings')

Greetings, world!

>>> hello_3('Greetings', 'universe')

Greetings, universe!

>>> hello_3(name='Gumby')

Hello, Gumby!

Παράμετροι

>>> def hello(greetings='Hello',name='world'):
print(greetings+', '+name)

>>> hello()
Hello, world
>>> hello(greetings='Hi')
Hi, world
>>> hello(name='Mike')
Hello, Mike

Παράμετροι

>>> hello(name='Mike',greetings='Hi')
Hi, Mike
>>> hello('Hi','Mike')
Hi, Mike
>>> hello('Mike','Hi')
Mike, Hi
>>> hello('Hi')
Hi, world
>>> hello('Mike')
Mike, world

Μεταβλητός αριθμός παραμέτρων

def print_params(*params):

print (params)

>>> print_params('Testing')

('Testing',)

>>> print_params(1, 2, 3)

(1, 2, 3)

Μεταβλητός αριθμός παραμέτρων

def print_params_2(title, *params):
print (title)
print (params)

print_params_2('Params:', 1, 2, 3)
Params:
(1, 2, 3)

>>> print_params_2('Nothing:')
Nothing:
()

Μεταβλητός αριθμός παραμέτρων

def print_params_3(**params):

print (params)

>>> print_params_3(x=1, y=2, z=3)

{'z': 3, 'x': 1, 'y': 2}

Μεταβλητός αριθμός παραμέτρων

def print_params_4(x, y, z=3, *pospar, **keypar):
print (x, y, z)
print (pospar)
print (keypar)

>>> print_params_4(1, 2, 3, 5, 6, 7, foo=1, bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> print_params_4(1, 2)
1 2 3
()
{}

Κατανομή στις παραμέτρους

def add(x, y): return x + y

params = (1, 2)

>>> add(*params)

3

Κατανομή στις παραμέτρους

>>> params = {'name': 'Sir Robin', 'greeting': 'Well met'}

>>> hello_3(**params)

Well met, Sir Robin!

Κατανομή στις παραμέτρους

>>> def with_stars(**kwds):

print (kwds['name'], 'is', kwds['age'], 'years old‘)

>>> def without_stars(kwds):

print (kwds['name'], 'is', kwds['age'], 'years old‘)

>>> args = {'name': 'Mr. Gumby', 'age': 42}

>>> with_stars(**args)

Mr. Gumby is 42 years old

>>> without_stars(args)

Mr. Gumby is 42 years old

Παραδείγματα

def power(x, y, *others):
if others:

print ('Received redundant parameters:', others)
return pow(x, y)

>>> power(2,3)
8
>>> power(3,2)
9
>>> power(y=3,x=2)
8

Ταξινόμηση

Ταξινόμηση

Η Python έχει ενσωματωμένη μέθοδο για ταξινόμηση λιστών:

>>> seq = [34, 67, 8, 123, 4, 100, 95]

>>>seq.sort()

>>>seq

[4, 8, 34, 67, 95, 100, 123]

Η συνάρτηση sorted

>>>sorted([4, 3, 6, 8, 3])

[3, 3, 4, 6, 8]

Ταξινόμηση με επιλογή (selection sort)
def SortIntegerArray(array):
 n=len(array)
 for lh in range(0,n):
 rh=FindSmallestInteger(array, lh, n-1)
 SwapIntegerElements(array, lh, rh)

def FindSmallestInteger(array, low, high):
 spos=low
 for i in range(low, high+1):
 if array[i]<array[spos]:
 spos=i
 return(spos)

Ταξινόμηση με επιλογή (selection sort)

def SwapIntegerElements(array, p1, p2):

 array[p1], array[p2] = array[p2], array[p1]

bubblesort

def bubblesort(numbers):

 array_size=len(numbers)

 for i in range(array_size-1, -1, -1):

 for j in range(1,i+1):

 if numbers[j-1]>numbers[j]:

 numbers[j-1], numbers[j]=numbers[j], numbers[j-1]

Insertionsort

def InsertionSort(numbers):

 array_size=len(numbers)

 for i in range(1, array_size):

 index=numbers[i]

 j=i

 while (j>0) and numbers[j-1]>index:

 numbers[j]=numbers[j-1]

 j=j-1

 numbers[j]=index

Αναζήτηση στην Python

>>>x=[232, 2, 21, 1, 2]

>>>21 in x

True

>>>3 in x

False

Δεν μου λέει σε ποια θέση της λίστας βρίσκεται το στοιχείο που
ψάχνω.

Η μέθοδος index

>>>[2, 3, 4, 2, 1].index(2)

0

>>>[2, 3, 4, 2, 1].index(5)

Traceback (most recent call last):

 File "<pyshell#24>", line 1, in <module>

 [2, 3, 4, 2, 1].index(5)

ValueError: 5 is not in list

Γραμμική Αναζήτηση (Linear Search)

Ψάχνουμε την θέση μιας τιμής κλειδί

Γραμμική Αναζήτηση (Linear search)
 Απλούστερη δυνατή
 Σύγκρινε σειριακά κάθε στοιχείο του πίνακα με την τιμή-κλειδί
 Χρήσιμο για μικρούς και ΜΗ ταξινομημένους πίνακες

linearsearch

def linearsearch(a, key):

 array_size=len(a)

 for i in range(array_size):

 if key==a[i]:

 return i

 return -1

Δυαδική Αναζήτηση (Binary Search)

Δυαδική Αναζήτηση
 Σε ταξινομημένους πίνακες μόνο
 Συγκρίνει το middle στοιχείο με το ζητούμενο key

 Αν είναι ίσα βρέθηκε
 Αν key < middle, ψάχνει στο 1ο μισό του πίνακα
 Αν key > middle, ψάχνει στο 2ο μισό του πίνακα
 Επανάληψη

 Πολύ γρήγορη
 Στη χειρότερη περίπτωση n βήματα, για

2n > αριθμό στοιχείων

Πίνακας 30 στοιχείων χρειάζεται το πολύ 5 βήματα
 25 > 30 δηλαδή 5 βήματα

binarysearch

def binarysearch(a, key, low, high):
 while low<=high:
 middle=(low+high)//2
 if key==a[middle]:
 return middle
 elif key<middle:
 high=middle-1
 else:
 low=middle+1
 return -1

	Διαφάνεια 1
	Διαφάνεια 2
	Python
	Python – Ανοικτό Λογισμικό
	Python – Ανοικτό Λογισμικό
	Python 
	Εκδόσεις της Python
	Python
	Διαδραστικός Διερμηνευτής
	Ακέραιοι και Πραγματικοί
	Διαίρεση και Υπόλοιπο
	Ύψωση σε Δύναμη
	Αριθμητικά Συστήματα
	Μεταβλητές
	Input
	Input
	Συναρτήσεις
	Modules
	Μιγαδικοί αριθμοί
	Μιγαδικοί αριθμοί
	Αλφαριθμητικά (strings)
	Συνένωση αλφαριθμητικών
	Δομές δεδομένων
	Λίστες
	Δείκτες θέσης (indexing)
	Δείκτες θέσης (indexing)
	Slicing
	Slicing
	Slicing
	Βήμα
	Αρνητικό βήμα
	Πρόσθεση ακολουθιών
	Πολλαπλασιασμός
	Λίστες
	Άδεια λίστα και None
	Ιδιότητα του μέλους
	Ιδιότητα του μέλους
	παράθεση
	η συνάρτηση list
	min, max, len
	τροποποίηση στοιχείων λίστας
	διαγραφή στοιχείων λίστας
	αντικατάσταση μέρους λίστας
	αντικατάσταση μέρους λίστας
	append
	count
	index
	insert
	pop
	remove
	reverse
	Διαφάνεια 52
	sort
	sort
	sort
	sort
	Πλειάδες
	Πλειάδες
	Δημιουργία από συνάρτηση
	Λειτουργίες σε μία πλειάδα
	Χρησιμότητα ?
	Λεξικά
	Λεξικά
	Συνάρτηση dict
	Βασικές Λειτουργίες
	clear
	fromkeys
	get
	has_key
	items
	pop
	popitem
	update
	Δομές Έλέγχου
	Μπλοκ κώδικα
	Μπλοκ κώδικα
	Συνθήκες
	True και False
	Τύπος bool
	Η εντολή if
	elif και else
	Φωλιασμένα μπλοκ
	Τελεστές σύγκρισης
	Τελεστές σύγκρισης
	Ο τελεστής is (τελεστής ταυτότητας)
	Ο τελεστής in
	Σύγκριση αλφαριθμητικών και ακολουθιών
	Boolean τελεστές
	Boolean τελεστές
	Boolean τελεστές
	Ο βρόχος while
	Ο βρόχος for
	range
	Επαναλήψεις σε λεξικά
	Παράλληλες επαναλήψεις
	Η συνάρτηση zip
	Παράλληλες επαναλήψεις με zip
	Αντικατάσταση αλφαριθμητικού
	reversed και sorted
	Η εντολή break
	range με βήμα
	Ο ιδιωματισμός while True/break
	O ιδιωματισμός while True/break
	O ιδιωματισμός while True/break
	Χρήση Boolean σημαίας
	Χρήση else στη for
	Περισσότερα για λίστες
	Περισσότερα για λίστες
	Η εντολή pass
	Παραδείγματα
	Ύψωση σε δύναμη
	Παραγοντικό
	Παραγοντικό ενός αριθμού
	Υπολογισμός ψηφίων ακέραιου αριθμού
	Υπολογισμός αθροίσματος ψηφίων ακέραιου αριθμού
	Πίνακες
	Πίνακες
	Αρχικοποίηση πινάκων
	Αρχικοποίηση πινάκων
	Πρόσθεση πινάκων
	Πρόσθεση πινάκων (συνέχεια)
	Πολλαπλασιασμός πινάκων NxN
	Πολλαπλασιασμός πινάκων
	Πολλαπλασιασμός πινάκων (συνέχεια)
	Ανάστροφος πίνακα
	Ανάστροφος πίνακα (συνέχεια)
	Συναρτήσεις
	Hello world
	Hello world
	Fibonacci numbers
	Fibonacci numbers
	Τεκμηρίωση
	Τεκμηρίωση
	Κάτι σαν συναρτήσεις …
	Κάτι σαν συναρτήσεις …
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Παράμετροι
	Μεταβλητός αριθμός παραμέτρων
	Μεταβλητός αριθμός παραμέτρων
	Μεταβλητός αριθμός παραμέτρων
	Μεταβλητός αριθμός παραμέτρων
	Κατανομή στις παραμέτρους
	Κατανομή στις παραμέτρους
	Κατανομή στις παραμέτρους
	Παραδείγματα
	Ταξινόμηση
	Ταξινόμηση
	Η συνάρτηση sorted
	Ταξινόμηση με επιλογή (selection sort)
	Ταξινόμηση με επιλογή (selection sort)
	bubblesort
	Insertionsort
	Αναζήτηση στην Python
	Η μέθοδος index
	Γραμμική Αναζήτηση (Linear Search)
	linearsearch
	Δυαδική Αναζήτηση (Binary Search)
	binarysearch

