
Greenfoot
An Introduction to OOP

Presented by
Adrienne Decker

Stephanie Hoeppner
Fran Trees

1

Some materials based on Greenroom Resources. Free to use, modify and
distribute under Creative Commons Attribution Share Alike 3.0 License.

GreenfootGreenfoot

�• a combination between a framework fora combination between a framework for
creating two dimensional grid assignments in
Java and an IDE.

�• a tool for teaching programming with the Java
language.
�– Intended for ages 14 and older.
�– Download from: http://www.greenfoot.org/
�– It has interface translations into languages
including French, German and Italian.

2

Session DescriptionSession Description
�• In this presentation, we will introduce
G fGreenfoot.

�• This presentation is aimed at teachers of
introductory Java programming courses (high
schools and universities) who have never
worked with the Greenfoot environment
before.

3

Presentation DescriptionPresentation Description
�• This presentation is intended to give educators
an introduction to the Greenfoot environment aan introduction to the Greenfoot environment, a
demonstration of how it can be used to introduce
object oriented programming to students, and aj p g g ,
guided approach to developing Greenfoot
experiences that can be integrated into existing

i lcurricula.

Th i i i ll i d d ll�• The session is practically oriented and allows
participants to use Greenfoot in their classroom
immediatelyimmediately.

4

Session Goals

�• To introduce the Greenfoot environment
�– A source code editor
�– A class browser
�– Compilation control
�– Execution controlExecution control

�• While discussing the teaching of
Java through examples�– Java through examples

5

AgendaAgenda

�• Building a Greenfoot program (to learn aboutBuilding a Greenfoot program (to learn about
Greenfoot) CRABS, WORMS, and LOBSTERS
�– Start with an existing scenario�– Start with an existing scenario
�– Introduce objects and classes
Work with interacting classes�– Work with interacting classes

�– Look at movement in the world
I l d d b h i d d�– Include random behavior and sound

6

AgendaAgenda

�• Moving beyond the first scenario:Moving beyond the first scenario:
Demonstration of some advanced features of
Greenfoot:Greenfoot:
�– Image control
Animation�– Animation

�– Collision Detection

7

AgendaAgenda

S l i G f t t t h�• Some examples using Greenfoot to teach or
review CS topics

�• Greenfoot.org
�– Publishing Scenarios
�– Available Resources

�• Questions?????Q

8

Greenfoot (Little Crab Scenario)Greenfoot (Little Crab Scenario)

�• Like BlueJ Greenfoot teaches object orientedLike BlueJ, Greenfoot teaches object oriented
programming in a visual manner. Each actor is
an object that moves around in a world (alsoan object that moves around in a world (also
an object).

�• This allows teaching of object oriented
i i l (h d i i bj)principles (method invocation, object state)

before even beginning to look at or write
dcode.

9

Greenfoot EnvironmentGreenfoot Environment

Class Diagram

World

10

Greenfoot classes
(Help Option)

ActorActor GreenfootSoundGreenfootSound

GreenfootGreenfoot MouseInfoMouseInfo

GreenfootImageGreenfootImage WorldWorld

Objects and Classes ClassObjects and Classes Class
Crab

Instance

constructorof the
Crab class

12

Defining state (attributes)Defining state (attributes)

Object
Inspector

13

Defining behavior (methods)Defining behavior (methods)

Crab
methods

14

Defining behavior (methods)Defining behavior (methods)

MethodsMethods
inherited from
Animal

15

Defining behavior (methods)

MethodsMethods
inherited from
Actor

16

ActorsActors

'Actors' have predefined state:Actors have predefined state:

�• image
�• location (in the world)location (in the world)
�• rotation

Create a new Crab and press " >Act "
Click " Run" to call act continuously

Nothing
h !happens!

18

Let�’s investigate the Java code for act!

import greenfoot.; // (World, Actor,
G f tI d G f t)GreenfootImage, and Greenfoot)

/
This class defines a crab. Crabs live on the
beach.

/
bli l C b t d A i lpublic class Crab extends Animal

{
public void act()
{

The crab does
{
}

}

nothing when it
acts!

19

Defining the Crab�’s behavior for actDefining the Crab s behavior for act
public class Crab extends Animal
{

public void act()
{{

move();
}}

}

CompileCompile
Run

What happens?
20

Movement Key PointMovement Key Point

Y h th l l f b t ti / l it�• You can choose the level of abstraction/complexity
to expose to your students by preparing the
scenarioscenario.

�• move();move();

�• setLocation(getX()+1, getY());

Defining the Crab�’s behavior for actDefining the Crab s behavior for act
If crab is at the edge, turn around and

h h

public class Crab extends Animal

go the other way.

public class Crab extends Animal
{

public void act()
{{

move();
// more code here

}
}

22

If crab is at the edge, turn around and
go the other waygo the other way.

23

If crab is at the edge, turn smoothly and
go the other way!go the other way!

public void act()
{

()move();
if(atWorldEdge())
{{

turn(15);
}

}

24

Objects and Classes
l ld h bPopulate your world with crabs

Each instance of a
C b has its ownCrab has its own
attributes (state).

25

Objects and Classes

The description of what comprises an object of a particular
type is a classyp

A class defines the behavior and attributes (characteristics)
of objects (what an object knows about itself).

Objects are instances of a class.

Crab class: blueprintCrab objects Crab class: blueprint
for crabs

26

What a crab knows about itself:What a crab knows about itself:

Crabs can not
directly access:

x
yy
Rotation
World
image

Need accessors
andmutators
provided by
Actor to do thatActor to do that.

27

Crab inherits from ActorCrab inherits from Actor
�• Crabs can not
directly accessdirectly access:
�– x
�– yy
�– Rotation
�– World
i�– image

�• Need accessors andNeed accessors and
mutators provided
by Actor to do that.

28

Crab inherits from ActorCrab inherits from Actor
�• Crabs can not
directly accessdirectly access:
�– x
�– yy
�– Rotation
�– World
i�– image

�• Need accessors andNeed accessors and
mutators provided
by Actor to do that.

29

Crab inherits from ActorCrab inherits from Actor
�• Crabs can not
directly accessdirectly access:
�– x
�– yy
�– Rotation
�– World
i�– image

�• Need accessors andNeed accessors and
mutators provided
by Actor to do that.

30

Crab inherits from ActorCrab inherits from Actor

�• Crabs can notCrabs can not
directly access:
�– x
�– y
�– Rotation
�– WorldWorld
�– image

�• Need accessors and
mutators provided
by Actor to do thatby Actor to do that.

31

Objects and ClassesObjects and Classes
�• Populate your world with a few instances of thep y
Crab class.

�• Can there be more than one object in a position?
�• Can a Crabmove to a position that another
Crab occupies?

�• Can a Crabmove outside the boundaries of the�• Can a Crabmove outside the boundaries of the
world?

�• How is invoking the actmethod of a Crab g
different from clicking the act execution control
button.

32

Populating the world
(U i th G f t API)(Using the Greenfoot API)
http://www.greenfoot.org/doc/javadoc/

public CrabWorld()
{

super(560, 560, 1);

addObject(new Crab() 100 200);addObject(new Crab(), 100,200);
addObject(new Crab(), 150,290);
addObject(new Crab(), 300,400);
addObject(new Crab(), 500,50);

}}

33

Save the World!

34

Interacting classes
h b hThe crabs are hungry!

�• Crabs eat worms.C abs eat o s.
1. Right click Animal; choose "New Subclass..."

2 Name it "Worm"2. Name it "Worm".

3. Choose an image.

Add worms to your world.

Run

What happens?pp

35

Modify the Crab class to teach the crab
to eat worms.

�• If the crab sees a worm Worm.classIf the crab sees a worm

�– Eat the worm

Worm.class

36

Modify the Crab class to teach the crab
to eat worms

�• If the crab sees a wormIf the crab sees a worm

�– Eat the worm
public void act()
{{

move();
if(canSee(Worm.class))
{{

eat(Worm.class);
}
else if(atWorldEdge())else if(atWorldEdge())
{

turn(15);
}

}

37

Greenfoot soundsGreenfoot sounds
if(canSee(Worm.class))
{{

eat(Worm.class);
G f t l S d(" l ")Greenfoot.playSound("slurp.wav");

}

Y h h l l f�• You can choose the level of
abstraction/complexity to expose to your

d b i h istudents by preparing the scenario.
�• Animal defines �‘canSee�’ and �‘eat�’...

38

�• ...but it does not have to.

Summary: so far�…..Summary: so far�…..

�• The difference between objects and classes�• The difference between objects and classes
�• Method signature and definition
�• Parameters
�• Boolean expressions
�• int, boolean, and void returns
�• private vs public�• private vs public
�• if; if-else

39

More interesting behaviorMore interesting behavior

�• Random NumbersRandom Numbers
�– In Greenfoot:

�• int r = Greenfoot.getRandomNumber(100);g ();

�• Returns a random int between 0 (inclusive) and 100(exclusive)

�• int r Greenfoot getRandomNumber(100) 50;�• int r = Greenfoot.getRandomNumber(100)- 50;

�• Returns a random int between 50 (inclusive) and 50(exclusive)

40

A more interesting CrabA more interesting Crab
public class Crab extends Animal
{{

public void act()
{

if (atWorldEdge())
{

(1)turn(15);
}
move();
if (canSee(Worm.class))
{{

eat(Worm.class);
}

// Generate a random int between 0 and 100

// If the number is less than 10, turn a random number of degrees
// between 0 and 45 (right or left).

}
}

41

The improved CrabThe improved Crab
public class Crab extends Animal
{

public void act()
{{

turnAtEdge()
randomTurn();
move();
lookForWorm();

}
}}

42

An alternate CrabWorldAn alternate CrabWorld
public CrabWorld()

{

super(560, 560, 1);

populateWithCrabs();

populateWithWorms();

}

public void populateWithCrabs()

{

final int NUM_CRABS =

//add NUM_CRABS crabs in random locations

}

public void populateWithWorms()

{

final int NUM_WORMS =

//add NUM_WORMS worms in random locations

}
43

Game is over when there are no
worms!

�• Whose responsibility is it to keep track of theWhose responsibility is it to keep track of the
worms?

�• World Methods?�• World Methods?
�• How do we "stop" the GREENFOOT Game?

44

Boring�…Boring�…

�• Nothing EXCITING happens!
�• Introduce�…

�• The Lobster

45

Interactive programs
Th L b h bThe Lobster meets the crab

�• Crabs eat worms.
�• Lobsters eat crabs!
�• You get to control the single crab!

46

The LobsterThe Lobster

�• The Lobster behaves like the crab did but eatse obste be a es e t e c ab d d but eats
crabs instead of worms.

public void act()
{

turnAtEdge();
randomTurn();
move();
lookForCrab();

}}

�• The crab's behavior will changeThe crab s behavior will change.

47

The interactive CrabThe interactive Crab

�• The crab is controlled by the keyboardThe crab is controlled by the keyboard.
�– Left arrow turn the crab 4 degrees
Right arrow turns the crab 4 degrees�– Right arrow turns the crab 4 degrees

public void act()public void act()

{

checkKeypress();

move();

lookForWorm();

}

48

KeypressKeypress

public void checkKeypress()public void checkKeypress()
{

if (Greenfoot.isKeyDown("left"))
{

turn(-4);
}}
if (Greenfoot.isKeyDown("right"))
{

turn(4);turn(4);
}

}

49

Animated creatures
h bAnimate the crab!

�• The image files used for your animationThe image files used for your animation
should live in the images folder for the
projectproject.
�– crab.png
crab2 png�– crab2.png

50

Animate the crab!Animate the crab!
private GreenfootImage image1;p g g

private GreenfootImage image2;

public Crab()

{

iimage1 = new GreenfootImage("crab.png");

image2 = new GreenfootImage("crab2.png");

setImage(image1);setImage(image1);

}

51

Animate the crab!Animate the crab!

public void act()public void act()

{

checkKeypress();checkKeypress();

move();

lookForWorm();lookForWorm();

switchImage();

}}

52

Our new World

53

Game is over when there are no
worms OR when a lobster eats the

crab

�• Distinguish between WIN and LOSS

54

(Some) Advanced Features(Some) Advanced Features

Collision Detection & Animations

55

Key Point (Reiterated)Key Point (Reiterated)

�• You can control the level of abstraction for theYou can control the level of abstraction for the
students with regards to movement and
animationanimation.

56

Moving ActorsMoving Actors
public void move(double distance) {

double angle = Math.toRadians(getRotation());

int x=(int)Math.round(getX()+Math.cos(angle) distance);int x (int)Math.round(getX()+Math.cos(angle) distance);

int y=(int)Math.round(getY()+Math.sin(angle) distance);

i ()setLocation(x, y);

}

57

Motion Using VectorsMotion Using Vectors

�• SmoothMover class uses a Vector to holdSmoothMover class uses a Vector to hold
direction and �“speed�” of motion.

�• Can create subclasses of SmoothMover to�• Can create subclasses of SmoothMover to
use this style of motion.
C ill h i f d l d�• Can illustrate the separation of model and
view.

58

Collision DetectionCollision Detection

�• Even if you don�’t have the students controlEven if you don t have the students control
motion/turning/etc. you can still have them
write more sophisticated collision detectionwrite more sophisticated collision detection
behaviors using the built in methods in
ActorActor.

59

Collision Detection MethodsCollision Detection Methods
java.util.List getIntersectingObjects(java.lang.Class cls)

java.util.List getNeighbours(int distance, boolean diagonal, java.lang.Class cls)

java.util.List getObjectsAtOffset(int dx, int dy, java.lang.Class cls)

j il i Obj (i di j l Cl l)java.util.List getObjectsInRange(int radius, java.lang.Class cls)

Actor getOneIntersectingObject(java.lang.Class cls)

Actor getOneObjectAtOffset(int dx, int dy, java.lang.Class cls)

60

getOneIntersectingObject(java.lang.Class cls) g g j (j g)

�• Pass in the class of the object to look for a particularPass in the class of the object to look for a particular
type of collision

�• Pass in null to look for any intersecting objecty g j

�• Returns one Actor object that matches the criteria.Returns one Actor object that matches the criteria.
�• null is returned if no intersections are detected

61

getOneObjectAtOffset
(i t d i t d j l Cl l)(int dx, int dy, java.lang.Class cls)

L k l h f bj t (i d d d)�• Look elsewhere for an object (pass in a dx and dy)
�• The Class parameter works the same as previous.

�• Returns same as previous: an Actor object that is
ll if i t ti d t t dnull if no intersections are detected.

62

getIntersectingObjects(java.lang.Class cls)g g j (j g)

�• Returns a list (java.util.List) of allReturns a list (java.util.List) of all
intersecting objects of a particular class type cls.
�– Passing in null returns intersections of all types.g yp

�• Can be used to discuss collections, generics, for eachCan be used to discuss collections, generics, for each
loop.

63

getObjectsAtOffset
(int dx int dy(int dx, int dy,

java.lang.Class cls)

�• Analogous to getObjectAtOffset except that it�• Analogous to getObjectAtOffset except that it
returns all of the objects that are intersecting.

64

getObjectsInRangeg j g

List getObjectsInRange(int r, java lang Class cls)

ll l

List getObjectsInRange(int r, java.lang.Class cls)
Return all objects within range 'r' around this object.

cell: 10 pixels

An object is "in j
range" if its
center point is
inside theinside the
circle.

65

r = 6 (cells)

getNeighboursg g

�• Most useful in a world where actors areMost useful in a world where actors are
contained in a cell (like GridWorld case study
for AP CS Exam)for AP CS Exam).

�• Returns the list of neighbors in the four
cardinal directions distance cells awaycardinal directions distance cells away
from the actor�’s current location.
P i h b l�• Passing true to the boolean parameter
includes the diagonals.

66

GreenfootImageGreenfootImage

�• This is the class that represents the images ofThis is the class that represents the images of
the actors and the world in the scenarios.

�• You can programmatically manipulate these�• You can programmatically manipulate these
images or draw your own images
programmaticallyprogrammatically.

67

Drawing MethodsDrawing Methods
clear()

drawImage(GreenfootImage image int x int y)drawImage(GreenfootImage image, int x, int y)

drawLine(int x1, int y1, int x2, int y2)

drawOval(int x int y int width int height)drawOval(int x, int y, int width, int height)

drawPolygon(int[] xPoints, int[] yPoints, int nPoints)

drawRect(int x, int y, int width, int height)

Outline
Shapes

drawRect(int x, int y, int width, int height)

drawShape(java.awt.Shape shape)

fill()

Sets the current
drawing color.

Needs to be done()

fillOval(int x, int y, int width, int height)

fillPolygon(int[] xPoints, int[] yPoints, int nPoints)

Filled in
Shapes

Needs to be done
before drawing or

filling.
yg y

fillRect(int x, int y, int width, int height)

fillShape(java.awt.Shape shape)
68

Sidenote: Drawing TextSidenote: Drawing Text

�• drawString(java.lang.String string, int x, int y)drawString(java.lang.String string, int x, int y)
�– Draw the text given by the specified string, using
the current font and color.

�• java.awt.Font getFont()
�– Get the current font.

�• setColor(java.awt.Color color)
�– Set the current drawing color.g

�• setFont(java.awt.Font f)
�– Set the current font.Set the current font.

69

Growing, Shrinking, TransparencyGrowing, Shrinking, Transparency
int getHeight()

Return the height of the imageReturn the height of the image.
int getWidth()

Return the width of the image.
scale(int width, int height)

Growing
&

Shrinking

Scales this image to a new size.

int getTransparency()
Return the current transparency of the image.Return the current transparency of the image.

setTransparency(int t)
Set the transparency of the image.

mirrorHorizontally()mirrorHorizontally()
Mirrors the image horizontally (flip around the x axis).

mirrorVertically()
Mirrors the image vertically (flip around the y axis).

Other
animated

rotate(int degrees)
Rotates this image around the center. 70

effects

Fun with ImagesFun with Images

�• Useful if interested in using some of the mediaUseful if interested in using some of the media
computation stuff

�• See getColorAt(x,y) and setColorAt(x,y)See getColorAt(x,y) and setColorAt(x,y)
methods
�– Grayscale an imagey g
�– Filters on images
�– Create negative
�– Chromakey

�• Can be used to reinforce loopsp

71

GreenfootGreenfoot

Simple Assignments
with Dice and Cardswith Dice and Cards

72

Boolean Expressions: Craps
The game consists of rolling 2 6 sided dice. The shooter makes a "come
out roll" with the intention of establishing a point.
If the shooter's come out roll is a 2 3 or 12 it is called "craps" (theIf the shooter s come out roll is a 2, 3 or 12, it is called craps (the
shooter is said to "crap out") and the round ends with players losing.

A come out roll of 7 or 11 is called a "natural," resulting in a win.

If the shooter's come out roll is a 4 5 6 8 9 or 10 this number becomesIf the shooter s come out roll is a 4, 5, 6, 8, 9, or 10, this number becomes
the "point". Once the "point" is established, the shooter will now
continue rolling for either the point number or a seven.

If th h t i f l i lli th i t b th lt i iIf the shooter is successful in rolling the point number, the result is a win.
If the shooter rolls a seven (called a "seven out"), the result is a loss.

73

Boolean Expressions: Craps

74

Arrays and ArrayLists: Poker (part 1)Arrays and ArrayLists: Poker (part 1)

75

Interfaces: Poker (Part2)Interfaces: Poker (Part2)

76

Interfaces: Poker (Part2)Interfaces: Poker (Part2)
public interface IHandPropertyTester
{{
/**
* Returns true if and only if hand satisfies this property
* @param hand is the hand testedp
* @return true if hand satisfies property being tested
*/
boolean hasProperty(Hand hand);

/**
* Returns the value of this hand if hand satisfies the property
* @param hand is the hand tested
* @return value of the hand tested.
*/
int getHighValue(Hand hand);

}}

77

Arrays and 2 D arraysArrays and 2 D arrays

78

Student Lottery
(h h)(Who gets this question or prize?)

79

Beyond Advanced
(and onto really, really cool)

Game Pads, Kinect

80

Game PadsGame Pads

�• PS2 and XBox like game padsPS2 and XBox like game pads
�• Support classes needed and available (along
with documentation and examples)with documentation and examples)

�• http://www.greenfoot.org/doc/gamepad/

81

KinectKinect

�• http://www greenfoot org/doc/kinect/http://www.greenfoot.org/doc/kinect/
�• Kinect video

82

Crabs, and Lobsters, and Bears �–
oh my!?!

Help, Resources, & Community

83

Greenfoot GalleryGreenfoot Gallery

�• Share!Share!

Greenroom

�• Meet!

More informationMore information
�• www.greenfoot.org

�• discussion group

�• scenario repositoryp y

�• tutorials (text and video)

�• Greenfoot GalleryGreenfoot Gallery

�• Greenroom

�• Adrienne: newyork hub@greenfoot org�• Adrienne: newyork hub@greenfoot.org

�• Fran: newjersey hub@greenfoot.org

Questions?Questions?

Discussion Time

88

