
GRASS GIS for Geomorphologists:

An Introductory Guide

Andrew Wickert

April 16, 2012

2

Contents

1 Introduction 7
1.1 GIS . 7
1.2 What is GRASS? . 8

1.2.1 GRASS Interfaces . 8
1.2.2 Topology . 9
1.2.3 File structure . 9

2 Downloading and Installing GRASS 11
2.1 Ubuntu (should work for Debian too) 11
2.2 Mac OS X . 11
2.3 Windows 7 . 13

2.3.1 Native Install . 13
2.3.2 Unix oriented . 13

3 Starting GRASS and Creating a Location 15
3.1 Starting GRASS . 15
3.2 Database manager . 15
3.3 Creating a Location: Gordon Gulch 16
3.4 Starting a GRASS GIS session 18

4 Basic Raster Display and Region Operations 23
4.1 Importing GDAL Raster Data 23
4.2 Viewing and setting the region 25
4.3 Displaying Raster Data . 26

4.3.1 Simple raster display with the command line 26
4.3.2 Displaying raster (elevation and shaded relief) maps in

the graphical interface . 26
4.3.3 Combining rasters for display in the command line: ele-

vation and shaded relief 27

5 Topographic and hydrologic analyses 31
5.1 Slope, aspect, and resampling 31
5.2 Drainage Networks . 32
5.3 Gordon Gulch drainage basin from set pour point 35

3

4 CONTENTS

5.4 Solar radiation . 39
5.5 Cosmogenic dating . 40

6 Vectors and databases 43
6.1 Vector topology . 43
6.2 Managing databases and uploading vector attributes 44
6.3 Advanced Vector and Database Processing 45

6.3.1 Obtaining and cleaning points in stream networks 45
6.3.2 Queerying categories . 46
6.3.3 Extracting vector subsets 47

7 File input and output 51
7.1 Raster . 51
7.2 Vector . 52
7.3 Google Earth . 53

7.3.1 Coordinate transformation to lat/lon 53
7.3.2 Vector . 55
7.3.3 Raster . 55
7.3.4 Import into Google Earth 58

8 Writing and Executing Scripts 61
8.1 Text editors for programming . 61
8.2 Shell scripting (Bash) . 61
8.3 Python scripting . 63

9 Wrap-up 65
9.1 Thoughts from the Author . 65
9.2 Useful Resources . 66
9.3 Future Plans . 66
9.4 Contact Information . 66

Boxes

1.1 Why GRASS? . 8
2.1 Good things to have for MacOS 13
4.1 Help! . 24
4.2 UNIX/GRASS terminal syntax 25
4.3 Tips for the terminal . 30
5.1 GRASS GIS online (and o�ine) help 33
5.2 GRASS add-ons . 34
6.1 Specifying pour point locations by intersections 48
7.1 Image processing . 52
7.2 Latitude and Longitude in GRASS 54

Notes

Original draft �nished 22 December 2011

First �nished draft completed on 16 April 2012

These notes are written for GRASS 6.4.X.

License

GRASS GIS for Geomorphologists: An Introductory Guide by Andrew D. Wick-
ert is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License. You may freely use it, share it, and change it, so long as the author
gets some recognition. And if you want to change it, please let me know! I'd
love to have help in maintaining and/or expanding this manual.

5

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

6 BOXES

Chapter 1

Introduction

1.1 GIS

Most of you are probably familiar with GIS, and some of you probably use
it very often. But for those of you who don't, GIS stands for "Geographical
Information System". It is a software / programming language that is designed
to work with data that are displayed spatially�in x,y,z or lat/lon,z coordinates.

Geospatial data take two main forms. Raster data are regularly-spaced
Cartesian grids. Vector data are speci�ed by sets of ungridded x,y,z points
that do not necessarily coincide with the position and spacing of raster grids.
These can include points, lines, and areas. Raster and vector data types can be
used in three dimensions as well, with three dimensional grids and the addition
of volume-�lling vector elements. The most common geomorphic raster is the
digital elevation model (DEM); other common rasters are classi�ed land-use
maps and remotely sensed imagery: in general, they represent the intensity of
some value across the whole region of interest. Common examples of vector data
in geomorphology are river channels (lines), lakes (areas), and sample locations
(points).

GIS packages contain a number of tools to work with raster and vector
data, make calculations based on them, perform �le input/output, reproject
data from one coordinate system to another, manage databases of georeferenced
information, and create human-readable maps to display the data that the GIS
package stores and processes.

Some reasons that geomorphologists use GIS are to:

1. Build maps

2. Display topographic data

3. Make calculations of topographic features (e.g., hypsometry, curvatures of
hillslopes)

4. Generate features involving water: lakes, rivers, drainage basins, shore-
lines

7

8 CHAPTER 1. INTRODUCTION

5. Calculate regional values, such as insolation and 10Be production rates

6. Calculate and/or show regions of landscape change (e.g., erosion, deposi-
tion, glacier retreat) over time

1.2 What is GRASS?

GRASS is the most popular open-source GIS package available. GRASS stands
for Geographic Resources Analysis Support System. It was �rst developed in
1982 by the US Army Corps of engineers to be able to perform analyses for
the National Environmental Policy Act, with an emphasis on environmental
research and monitoring. It was released to the community in the early 90's,
and has been a community-driven open source project ever since.

Why GRASS?
I use GRASS because it is cross-platform (I am much more comfortable
on UNIX-like systems than on Windows); it is very good at hydrologic
analyses; it is very scriptable for easy batch processing, sharing of
reproducible analyses, and geospatial integration of numerical models; it
is open-source (so I can change components to �t my needs), and because
I can share my work with anyone from around the world without being
tied down to expensive software.

On a personal note, I �nd programming in Windows to be a utterly hor-
ri�c, time-wasting, and demoralizing experience. GRASS lets me stay on
a UNIX-like OS, and this alone is reason enough for me to use it.

Box 1.1: Why GRASS?

Being open-source means that you can view and change all of the source
code�mostly C, with some bash and Python�in which it is written. While
I have occasionally tweaked the source code for specialized projects, I almost
never have to: in my experience, GRASS is well-vetted and fully-functional.

For more information, go to http://grass.osgeo.org/.

1.2.1 GRASS Interfaces

GRASS is more of a computational / scripting GIS and less of a point-and-
click GIS than ArcGIS. I �nd this to be an advantage, but for those of you
who like point-and-click there are a couple of options. GRASS now has a new
interface that is much improved from its old one, which is good for displaying
data. For editing vector �les, I have found Quantum GIS to be very nice: http:
//www.qgis.org/. It can work with GRASS data structures, and therefore be
integrated with your GRASS GIS project.

http://grass.osgeo.org/
http://www.qgis.org/
http://www.qgis.org/

1.2. WHAT IS GRASS? 9

1.2.2 Topology

A major feature of GRASS is that it is a topological GIS. That is, it is impossible
to have small gaps or overlaps between vector areas (or �polygons�). It also forces
lines to meet and interact according to some fairly logical rules. This helps for
consistency in geologic mapping and allows users to queery vector maps based
on their neighbors.

1.2.3 File structure

GRASS creates its own �le system. This is more rigid than the way that Arc
handles �les, but means that you will never lose your GIS �les, and you can take
your whole folder with you as a bundle. File operations are handled internally
by GRASS. There are a large number of import/export options (GDAL, OGR,
ASCII, etc.) that can be used to share your work with other GIS applications.
I mention the �le system again in Section 3.3.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Downloading and Installing

GRASS

Installation varies from a no-brainer to a di�cult task, depending on your op-
erating system. I am going to be giving instructions for how to make the pre-
compiled binaries work. Compiling your own version of GRASS is important if
you want to change the source code and/or use the most updated version, but it
takes more work. (Pre-compiled binaries are the normal kinds of programs you
would install on a computer from a CD or the internet; compiling it yourself
means that you download the code and use a compiler, which turns this code
into a binary program that your computer can run.) We will be downloading
and installing the stable release of GRASS, which right now is GRASS 6.4.1 or
GRASS 6.4.2.

For all of these installation instructions, your computer must have access to
the internet.

In addition to the version and platforms mentioned, other versions of GRASS
can be downloaded from http://grass.osgeo.org/download/software.php.

2.1 Ubuntu (should work for Debian too)

Open a terminal (CTRL+ALT+t). Type:

sudo apt-get install grass

Type your password, press "y" for yes, and wait as the computer installs the
program and its dependencies.

2.2 Mac OS X

(Written after installing GRASS for Mac OS 10.6: Snow Leopard)

11

http://grass.osgeo.org/download/software.php

12 CHAPTER 2. DOWNLOADING AND INSTALLING GRASS

Go to http://grass.osgeo.org/grass64/binary/macosx/ for instructions.
We're going to be a bit newer than what they suggest, so let's go for Python
2.7.X and a new-ish version of wxpython. As the website says, these are used
to run the graphical interface. Python is also important to be able to build
reusable scripts that automate tasks within GRASS in a way that allows more
�exibility than shell (e.g., Bash) scripts.

Apple computers come with pre-installed python, but this is often out-of-
date because of the 1-2 year Apple release cycle. So go to:

http://www.python.org/download/releases/

and click on the highest Python 2.X you can �nd. Then scroll down to "Mac
OS X 64-bit/32-bit x86-64/i386 Installer" (under "Download"). As of the time
of writing, the highest 2.X version of Python is 2.7.2, and a direct link to that is:

http://www.python.org/ftp/python/2.7.2/python-2.7.2-macosx10.6.dmg

Now, go to http://www.kyngchaos.com/software/unixport/grass. This
is the bottom link on your current page, http://grass.osgeo.org/grass64/
binary/macosx/. This gives you the instructions to install GRASS and the
required "frameworks packages". These are listed in the order in which they
should be installed. Click on one of the frameworks packages or go directly
to: http://www.kyngchaos.com/software/frameworks to download the .dmg
�les and install them.

As of the time of writing, these are direct links in the order that they should
be installed for Mac OS 10.6 "Snow Leopard":

GDAL:
http://www.kyngchaos.com/files/software/frameworks/PROJ_Framework-4.

7.0-2-snow.dmg

Free Type:
http://www.kyngchaos.com/files/software/frameworks/FreeType_Framework-2.

4.6-1-snow.dmg

cairo:
http://www.kyngchaos.com/files/software/frameworks/cairo_Framework-1.

10.2-3a-snow.dmg

You may also download the R programming language for statistics, but I
won't be using it here.

Once all of these frameworks packages have been installed, you are ready to
download and install GRASS. The links are given on the GRASS mac page,
http://www.kyngchaos.com/software/unixport/grass. The URL for the
download for Mac OS 10.6 is:

http://www.kyngchaos.com/files/software/grass/GRASS-6.4.1-5-Snow.dmg

http://grass.osgeo.org/grass64/binary/macosx/
http://www.python.org/download/releases/
http://www.python.org/ftp/python/2.7.2/python-2.7.2-macosx10.6.dmg
http://www.kyngchaos.com/software/unixport/grass
http://grass.osgeo.org/grass64/binary/macosx/
http://grass.osgeo.org/grass64/binary/macosx/
http://www.kyngchaos.com/software/frameworks
.dmg
http://www.kyngchaos.com/files/software/frameworks/PROJ_Framework-4.7.0-2-snow.dmg
http://www.kyngchaos.com/files/software/frameworks/PROJ_Framework-4.7.0-2-snow.dmg
http://www.kyngchaos.com/files/software/frameworks/FreeType_Framework-2.4.6-1-snow.dmg
http://www.kyngchaos.com/files/software/frameworks/FreeType_Framework-2.4.6-1-snow.dmg
http://www.kyngchaos.com/files/software/frameworks/cairo_Framework-1.10.2-3a-snow.dmg
http://www.kyngchaos.com/files/software/frameworks/cairo_Framework-1.10.2-3a-snow.dmg
http://www.kyngchaos.com/software/unixport/grass
http://www.kyngchaos.com/files/software/grass/GRASS-6.4.1-5-Snow.dmg

2.3. WINDOWS 7 13

Good things to have for MacOS
When I run MacOS, I like to use iTerm as my terminal application, and
either gedit or textWrangler as a text editor. These all have syntax high-
lighting and a bunch of nice additions that make programming and script-
ing easier. [Full-time Mac users may have better suggestions, so if you do,
please let me know so I can provide these here!]

Box 2.1: Good things to have for MacOS

2.3 Windows 7

There are two ways you can install GRASS in Windows. The �rst, the "Native
Install", is very easy and runs "out-of-the-box". This is su�cient for the exer-
cises that we will work here. However, it is incompatible with scripting in Bash
to create reusable sets of code for repeating certain processes and analyses. (I
think that the standard Windows GRASS should work �ne with Python script-
ing, but I haven't tested this.) For running Bash scripts, you need to install the
UNIX oriented version of GRASS.

The instructions on the following pages assume that you are running an
Unix-like system, so you may have to make some changes if you are running
Windows... I'm not entirely sure what those might be though, other than need-
ing to enter commands in the GRASS command prompt instead of in either this
command prompt or the terminal...

2.3.1 Native Install

The main page for GRASS for Windows is http://grass.osgeo.org/grass64/
binary/mswindows/. This links to a download page, which also has a good in-
troduction to GRASS:

http://grass.osgeo.org/grass64/binary/mswindows/native/

To download GRASS, click the link under "Installing GRASS" on that web
page, or go directly to this URL:

http://grass.osgeo.org/grass64/binary/mswindows/native/WinGRASS-6.

4.2RC2-1-Setup.exe

and install that package.

2.3.2 Unix oriented

NOTE: I HAVE NOT YET TRIED THIS

To install GRASS GIS to work in a Unix-like environment on Windows, you

http://grass.osgeo.org/grass64/binary/mswindows/
http://grass.osgeo.org/grass64/binary/mswindows/
http://grass.osgeo.org/grass64/binary/mswindows/native/
http://grass.osgeo.org/grass64/binary/mswindows/native/WinGRASS-6.4.2RC2-1-Setup.exe
http://grass.osgeo.org/grass64/binary/mswindows/native/WinGRASS-6.4.2RC2-1-Setup.exe

14 CHAPTER 2. DOWNLOADING AND INSTALLING GRASS

will need to download and install the Cygwin package and then install GRASS.
For the most part, you can follow the instructions on:

http://grass.osgeo.org/grass64/binary/mswindows/cygwin/

When you get to Part 2: GRASS GIS installation, step 4, the install �le is
the grass-6.4.0* �le that you can see at the top of the page and will need to
download.

In the "To start GRASS" instructions, you will want to use the new wx-
python GUI: instead of typing:

grass64 -tcltk

Type:

grass64 -wx

http://grass.osgeo.org/grass64/binary/mswindows/cygwin/
grass-6.4.0*

Chapter 3

Starting GRASS and

Creating a Location

3.1 Starting GRASS

There are two ways to start GRASS GIS. You can click on the provided icon
(Mac, Windows, Linux), or (in Linux and�probably�Windows running the
Unix-like cygwin) you can open a terminal window and type:

grass64 -wx

There must be a way to start it in the command line on Mac, but I haven't been
able to make a Mac know where its programs are (whichgrass and whichgrass64
turn up blanks).

If you click on the icon, check if your operating system also opens a terminal
window. GRASS has an internal terminal, but I prefer the to use the system
default one. (You, of course, are welcome to use either.)

Don't worry if you aren't used to using the command prompt: all of the
GRASS commands have a very consistent structure and good documentation,
and we will discuss those in depth later.

3.2 Database manager

Your default database manager for vector data will be DBF. We want to change
that to SQLite. This will be important later, but we should do it before we
start anything else. We will store our databases in our GIS directory. See
http://grass.fbk.eu/gdp/html_grass64/grass-sqlite.html.

GISDBASE=<THE_FOLDER_IN_WHICH_YOU_PLACED_GRASS: next line has my guess of what

it is

These definitions should work on UNIX-like OS's; not so sure about Windows

GISDBASE=$HOME/grassdata

LOCATION=GordonGulch

15

which grass
which grass64
http://grass.fbk.eu/gdp/html_grass64/grass-sqlite.html

16 CHAPTER 3. STARTING GRASS AND CREATING A LOCATION

MAPSET=PERMANENT

Then set the database

db.connect driver=sqlite database='$GISDBASE/$LOCATION_NAME/$MAPSET/sqlite.db'

db.connect -p

3.3 Creating a Location: Gordon Gulch

Once you start GRASS, a graphical window will pop up. If this is your �rst time
using GRASS, it will ask you to de�ne a directory to hold all of your GRASS
GIS �les. I typically use something like the default (a �grass� or �grassdata�
folder in my home directory).

Once this folder is created, you will see a start-up screen (see Figure 3.1).
Click Location Wizard. You should see a window like Figure 3.2. Set the
project location to �GordonGulch� and the location title to �Gordon Gulch -
Snow O�� so the location directory on your computer matches that in this
documentation. Click �next�, and select the �Read projection and datum terms
from a georeferenced data �le� option (Figure 3.3). Lots of other projection
selection methods are available, but we want to match the projection of the
sample data �le, and it is easiest to just pull that out of its metadata. Click
�next� and then browse to the folder where you have the Gordon Gulch data
that come with this tutorial. I usually click on the �hdr� �le (see Figure 3.4,
but I think that it is smart enough to �gure it out no matter which particular
�le you choose. Click �next�. You'll see a summary of your selections. Then
click �Finish�. A window will pop up asking if you want to set the default region
(Figure 3.5). Click �no� (or click �yes� and then don't change anything): the
region is the bounding box of the map and the resolution, but this has already
been imported properly from the Gordon Gulch LiDAR DEM metadata. If you
do click �yes�, you will see a screen like Figure 3.6.

Now that you're done, you'll be back at the starting window, but with your
new location �GordonGulch� de�ned (Figure 3.7). Inside GordonGulch, there is
a mapset called �PERMANENT�. This is the mapset that you will be using.

In collaborative projects the PERMANENT mapset typically contains only
communal �les, and each of you would have your own mapset created by clicking
the �create mapset� button. For example, if we were making a geologic map,
a DEM, scanned USGS topo sheets, and remotely sensed data products might
be in the PERMANENT mapset. I could read these �les, but could not write
to them or change anyone else's personal mapset. A few of us could then have
our own �contacts� vector maps that we would work on independently, without
risk of changing someone else's work. When we feel that we are done with our
respective sections of the map, we could merge our maps into a �nal �contacts�
vector layer, and add that to PERMANENT. This basically exists to avoid
common �le management issues in collaborative work. The reason that we will
be each using PERMANENT as our only mapset for this tutorial should now
be obvious: you will be the only user of your GIS location.

3.3. CREATING A LOCATION: GORDON GULCH 17

Figure 3.1: GRASS GIS start-up screen on Ubuntu. If you have just in-
stalled GRASS, you will have no project locations or mapsets, and your �Create
mapset�, �Rename mapset�, and �Start GRASS� buttons will be grayed out.

There is a reason and a big advantage to this initial set-up step. GRASS in-
ternally manages its �le structure, and keeps all of its data inside subdirectories
of this directory. So long as you don't add and delete �les from this directory
outside of GRASS (unless you really know what you are doing), this keeps ev-
erything very well organized: I have never had to mess with any of this. A
big advantage of this internal organization is that your GRASS directories are
portable: just copy/paste the entire GRASS directory or location folder, and it
will be properly set up on another machine without any of those painful broken
links to data �les.

18 CHAPTER 3. STARTING GRASS AND CREATING A LOCATION

Figure 3.2: Location wizard start screen.

3.4 Starting a GRASS GIS session

Now that you've �nished setting up your location, you're ready to start using
GRASS GIS! We will each use the PERMANENT mapset, since we are the sole
users of our GIS projects and want access to everything.

Click on �Start GRASS� in the start-up window (Figure 3.7). This window
will close, and in its place you will have 2 new GRASS windows (Figure 3.8).
These are the display and the layer manager. If you have a command line
window open as well, you should see something that looks like Figure 3.9

3.4. STARTING A GRASS GIS SESSION 19

Figure 3.3: We will be using the metadata with the Gordon Gulch LiDAR �le
to georeference our map, though you can do this in many ways.

Figure 3.4: We will be using the metadata with the Gordon Gulch LiDAR �le
to georeference our map, though you can do this in many ways.

20 CHAPTER 3. STARTING GRASS AND CREATING A LOCATION

Figure 3.5: You can click �no�, since the Gordon Gulck LiDAR metadata have
already properly set the computational region, which is the window that covers
the portion of the map of interest at the provided resolution. (Click �yes� to see
the parameters that can be set, but don't change them.)

Figure 3.6: If you click �yes� to edit the region (see Figure 3.5), you will get a
screen like this.

3.4. STARTING A GRASS GIS SESSION 21

Figure 3.7: Back at the start window, but all set to go.

22 CHAPTER 3. STARTING GRASS AND CREATING A LOCATION

Figure 3.8: The graphical user interface (GUI) windows in Mac OS. The right-
hand window is the layer manager that is the main graphical interface for
GRASS. The left-hand window is the map display.

Figure 3.9: The command line interface (CLI) in Mac.

Chapter 4

Basic Raster Display and

Region Operations

4.1 Importing GDAL Raster Data

We'll start by importing the DEM with the command line interface. Begin by
navigating to the directory where the DEM �les are located. For me, this looks
like:

GRASS 6.4.1 (GordonGulch):~ > cd Documents/geology_docs/courses/GRASS/data/

czo_1m_gg_snwOff/czo_1m_gg

GRASS 6.4.1 (GordonGulch):~/Documents/geology_docs/courses/GRASS/data/

czo_1m_gg_snwOff/czo_1m_gg > ls

dblbnd.adf hdr.adf metadata.xml prj.adf sta.adf w001001.adf w001001x.adf

The cd command changes directory. The ls command lists the �les in the
directory. (On Windows this second command is dir.) The text after the ls

command is the list of �les in my DEM directory: if this looks like what you
have, then you are in the right place.

The command that you will be using is r.in.gdal, which imports raster data
from any of the common GDAL formats (a GIS standard). Start by typing:

r.in.gdal help

This brings up a brief manual for that command that should look something
like:

Description:

Import GDAL supported raster file into a binary raster map layer.

Keywords:

raster, import

Usage:

r.in.gdal [-oeflk] [input=name] [output=name] [band=value]

[memory=value] [target=string] [title="phrase"] [location=string]

23

cd
ls
dir
ls
r.in.gdal

24CHAPTER 4. BASIC RASTER DISPLAY AND REGION OPERATIONS

[--overwrite] [--verbose] [--quiet]

Flags:

-o Override projection (use location's projection)

-e Extend location extents based on new dataset

-f List supported formats and exit

-l Force Lat/Lon maps to fit into geographic coordinates (90N,S; 180E,W)

-k Keep band numbers instead of using band color names

--o Allow output files to overwrite existing files

--v Verbose module output

--q Quiet module output

Parameters:

input Raster file to be imported

output Name for output raster map

band Band to select (default is all bands)

memory Cache size (MiB)

target Name of location to read projection from for GCPs transformation

title Title for resultant raster map

location Name for new location to create

Help!
Typing �help� after any command gives a summary of what it does and
how it should be used. I have been using GRASS for a long time, and
I still do this fairly frequently to make sure that I am using commands
correctly, especially when I am working in an interactive session. GRASS
has a lot of features, and it can be hard to remember all of the options
for all of them!

Box 4.1: Help!

Our import is not going to need to use most of these commands. What we
will need to do is to type:

r.in.gdal input=hdr.adf output=topo

It is possible to shorten the names of the parameters (e.g., �input� to �in�) so
long as there is no other parameter that starts with those letters. Once again,
I use the hdr.adf �le, though I think that most of them should work for this
import. Actually using this command should look something like this:

GRASS 6.4.1 (GordonGulch):~/Documents/geology_docs/courses/GRASS/data/

czo_1m_gg_snwOff/czo_1m_gg > r.in.gdal input=hdr.adf output=topo

Projection of input dataset and current location appear to match

100%

r.in.gdal complete. Raster map <topo> created.

GRASS 6.4.1 (GordonGulch):~/Documents/geology_docs/courses/GRASS/data/

czo_1m_gg_snwOff/czo_1m_gg >

This command starts with �r� because it operates on rasters. GRASS uses
these �X.� beginnings of commands to help di�erentiate the types of data on
which they operate.

hdr.adf

4.2. VIEWING AND SETTING THE REGION 25

UNIX/GRASS terminal syntax
Spaces separate distinct things in the UNIX terminal, so you can't have
spaces around your �=� signs. In GRASS, these spaces separate inputs to
the commands. Variables are evaluated with �$�, and strings are concate-
nated by doing nothing special. For example:

tmp = "testing"

d.mon x0 # open display monitor

d.rast $tmp # display "testing" raster, if it exists

d.out.file -t format=png output=$tmp_file # outputs "testing_file.png" -->

d.out.file adds the extension

Options sent to GRASS GIS commands can be shortened, if unambiguous. For
example: �column� to �col�, �input� to �in�, �output� to �out�, ...

Flags with one hyphen can be combined (e.g., �-g -n� = �-gn�), and I typically
put these before the main commands. I typcally put �ags with two hyphens
after commands; the most commonly-used of these is the overwrite �ag, ��o�. If
this �ag is not set, �les will not be overwritten.

Box 4.2: UNIX/GRASS terminal syntax

4.2 Viewing and setting the region

All of the commands that you run in GRASS are subject to a particular com-
putational window, which is called the �region�. You can use the g.region

command to look at the extent of this region and modify it.

GRASS 6.4.1 (GordonGulch):~ > g.region -p

projection: 1 (UTM)

zone: 13

datum: nad83

ellipsoid: grs80

north: 4431084.5

south: 4428353.5

west: 457305.5

east: 461795.5

nsres: 1

ewres: 1

rows: 2731

cols: 4490

cells: 12262190

This command gives information on the projection type, region boundaries, and
resolution. The current (and default) region is the entire area de�ned by the
Gordon Gulch raster that you used to de�ne the coordinate system. If you
change the region and want to bring it back to this full extent and original
resolution, type:

GRASS 6.4.1 (GordonGulch):~ > g.region rast=topo

g.region

26CHAPTER 4. BASIC RASTER DISPLAY AND REGION OPERATIONS

This sets the region to the resolution and edges of the raster �topo�.
Note that this command starts with a �g�. These are the general utilities,

used for copying data sets, moving them, setting projections, and other general-
purpose commands.

4.3 Displaying Raster Data

Now that we know that we have set the computational region to the full extent
of the DEM, we are ready to display the data.

4.3.1 Simple raster display with the command line

We will start by viewing the raster data with the command line tool. This isn't
as nice/interactive as the GUI, but allows us to write short scripts to create and
save map images automatically. This can be nice for creating consistent �gures
for use in presentations, papers, etc.

We will do some more complex work with both the command line and GUI
map displays later on, but for now we will just initialize a window and display
the raster DEM.

d.mon start=x0 # Start X-windowing display monitor #0

r.colors map=topo color=elevation # Use the scalable elevation color scheme for

the topo map

d.rast map=topo # Display the topo map

When you run these commands, you should have a window appear that looks
like Figure 4.1.

4.3.2 Displaying raster (elevation and shaded relief) maps
in the graphical interface

We can do the same thing in the graphical interface. In the �GRASS GIS Layer
Manager� window, click on the icon with the checkerboard grid and the plus sign
in the top bar. This is the raster display button. A window will appear as soon
as you click it (Figure 4.2). There should be only one map in the drop down
list, our �topo�. Select it and hit �OK�. You should now see the LiDAR DEM
displayed a second time. If it isn't showing up correctly, you might have to hit
the �zoom to computational region� button on the GRASS GIS Map Display
that goes along with the GUI.

Now, let's add a shaded relief map. Since we have not yet executed any
commands other than the map display with the graphical interface, we will
use that to construct the shaded relief map. On the menu bar, click Raster
→ Terrain analysis → Shaded relief. The input elevation map should be
�topo�. Under the �optional� tab, set the output shaded relief map name to
�shaded�. Click �Run�.

This is equivalent to running the following on the command line:

4.3. DISPLAYING RASTER DATA 27

Figure 4.1: A colorized digital elevation model (DEM) of Gordon Gulch in the
Boulder Creek Critical Zone Observatory.

> r.shaded.relief map=topo shadedmap=shaded

Calculating shading, please stand by.

100%

Color table for raster map <shaded> set to 'grey'

Shaded relief map created and named <shaded>.

We can show the shaded relief map using the GUI. Add the shaded relief map
to the layer manager below the �topo� DEM. Then right-click on topo and select
�change opacity level�. This cannot be done using the command line in GRASS
6.4 (the command line graphics gets an overhaul in the upcoming GRASS 7.0).
I like 30�40% opacity on the DEM that overlays the shaded relief map.

Now you have a pretty map that combines a DEM with shaded relief to give
a good sense of what the topography looks like (Figure 4.3). If you feel really
proud of your map, you can click the �export image� button on the toolbar and
save it to a �le.

4.3.3 Combining rasters for display in the command line:
elevation and shaded relief

It is also possible to combine raster maps on the command line into a nice-
looking result. This allows you to script the generation of maps, which I �nd

28CHAPTER 4. BASIC RASTER DISPLAY AND REGION OPERATIONS

Figure 4.2: Displaying raster data in the GUI. Note that the command line
command is printed in the lower-left corner. A good way to learn how to script
in GRASS is to use the graphical interface and read how what you do graphically
relates to what you would type at the command prompt.

4.3. DISPLAYING RASTER DATA 29

Figure 4.3: The gorgeous Gordon Gulch!

especially useful for time-series of data.
I use r.blend so I can export the resultant set of rasters later on in this

tutorial. Another command, d.shadedmap, works well for draping maps over
one another in the display monitor without creating any new rasters. While
you can't export the raster directly from the display window, you can also use
d.save, d.out.file, and other commands to save an image of the current
display.

Blend two rasters into a nice result!

r.blend first=topo second=shaded output=colored_shaded_relief percent=40

This creates a RGB triplet for the shaded relief map that you can display

d.mon x0

d.rgb r=colored_shaded_relief.r g=colored_shaded_relief.g b=colored_shaded_relief

.b

We can use commands to add a title and other nifty features too!

d.title is used to display the map title and other info; this is

in the map's metadata.

d.text adds selected text

There are lots of d.* commands to choose from!

r.blend
d.shadedmap
d.save
d.out.file

30CHAPTER 4. BASIC RASTER DISPLAY AND REGION OPERATIONS

Tips for the terminal
If you aren't used to the command prompt, but have a nice terminal emu-
lator, there are some nice tools to know about. The �rst is autocomplete:
press �tab� once to complete the current command / �le path / etc. you
are typing, or at least get it to the point at which it becomes ambiguous
as to what you wanted to type. Pressing �tab� twice gives you the list
of all of the commands / �le paths / etc. that start with what you have
typed.

Box 4.3: Tips for the terminal

Chapter 5

Topographic and hydrologic

analyses

5.1 Slope, aspect, and resampling

Let's try another example using the graphical interface (GUI) instead of the
command line. We will measure slope and aspect.

Go to the Raster menu. Raster → Terrain analysis → Slope and as-
pect. Set the raster map to "topo", then click the "outputs" tab. We won't
calculate x- and y- derivatives, as these are in an arbitrary orientation with
respect to the hills and valleys. We instead will calculate the slope (steepest
decent), aspect, pro�le (steepest descent orientation) curvature, and tangen-
tial (shallowest descent orientation) curvature. I call these "slope", "aspect",
"pcurv", and "tcurv", respectively. (See Figure 5.1.) Look at the bottom. The
command-line output is given here. This means that by entering values in the
GUI, you can teach yourself how to use the command line � which is very nice
as you start to want to write pre-packaged analysis algorithms. With the GUI
window for r.slope.aspect selected, press CTRL+c (or Command+c on mac �
actually, I can't get this to work on mac), and you copy this command-line
string:

r.slope.aspect elevation=topo slope=slope aspect=aspect pcurv=pcurv tcurv=tcurv

Click "run" and it prints out this command line string and runs the desired
command.

Try displaying one of the curvature maps in the viewer. It looks like a
bunch of random noise (Figure 5.2). This is because of the high (1 meter)
resolution of the LiDAR data: tiny bumps on the surface are dominating the
signal. Let's resample these data to 5 meter resolution. First, we have to
change our computational region's resolution. Then we use the "r.resample"
tool to coarsen our raster map.

g.region -p nsres=5 ewres=5 # "-p" prints the computational window.

31

32 CHAPTER 5. TOPOGRAPHIC AND HYDROLOGIC ANALYSES

Figure 5.1: Names for slope and aspect outputs.

r.resample input=topo output=topo5m

Now let's run r.slope.aspect again:

r.slope.aspect elevation=topo5m slope=slope5m aspect=aspect5m pcurv=pcurv5m tcurv

=tcurv5m

That's better. The pro�le curvature follows the hillslope contours well, and
the tangential curvature traces out river channels (Figure 5.3). Look at the
slope maps as well, and how much more continuous and smooth the 5m slope
map is than the 1m slope map.

5.2 Drainage Networks

Now let's build some drainage networks. By now you have the general idea
behind the syntax, so we'll get right to it. We are going to start by building
watersheds with a multi-�ow-direction algorithm.

[FIGURES]

g.region -p nsres=1 ewres=1 # Back to 1-m resolution

Use "r.watershed help" to find out what the various outputs are

5.2. DRAINAGE NETWORKS 33

Figure 5.2: At 1 meter resolution, local topographic variations completely dom-
inate the curvature signal, removing any obvious signal of the larger-scale land-
scape.

GRASS GIS online (and o�ine) help
To learn about the multi-�ow-direction algorithm, or most of the other
algorithms in GRASS, you can go to their help page. Look at the main
GUI window (the one that shows the layers in display or the command
line). On its toolbar, click on the rescue ring; this opens a browser
window with the GRASS help.

The GRASS help index tells you how to use the commands and what
research, theories, and/or publications the commands implement. This
help often comes with examples and/or diagrams to better explain the
situations.

In this particular case, we will navigate to the raster command index and
look for r.watershed, a watershed basin creation program. [NEW REF]

Box 5.1: GRASS GIS online (and o�ine) help

We are using multi-direction flow; you can use single-direction ("SFD")

by removing the "-f" flag

Threshold=62500 means that we need an accumulation area > 250x250 cells

= 250x250 meters here

r.watershed -f elevation=topo accumulation=accum_mfd drainage=draindir_mfd basin=

basins_mfd stream=streams_mfd threshold=62500

34 CHAPTER 5. TOPOGRAPHIC AND HYDROLOGIC ANALYSES

Figure 5.3: At 5 meter resolution, the tangential curvature is still noisy, but
channel networks have become visuallly discernable.

Thin the channels raster so we can vectorize it

r.thin input=streams_mfd output=streams_mfd_thinned

And to vector of stream channels

Vector and raster datasets may have the same name without overwriting each

other.

r.to.vect input=streams_mfd_thinned output=streams_mfd

Now to vectorize drainage basins

r.to.vect input=basins_mfd output=basins_mfd feature=area

The �thinning� step ensures that there are no clumps of pixels, and that a
single vector line therefore can be drawn cleanly through the raster during the
r.to.vect step.

GRASS add-ons
GRASS GIS has a number of add-ons. These are applications that have
not been fully adopted and integrated into the GRASS suite of tools, but
that can still be very useful. One of these, r.stream, is used for the
kinds of watershed problems that we are tackling right now. We will be
using the built-in GRASS tools in this tutorial, but to learn more about
the GRASS add-ons, go to their wiki page: http://grass.osgeo.org/

wiki/GRASS_AddOns.

Box 5.2: GRASS add-ons

While the multiple �ow direction algorithm is good for providing a more

r.to.vect
r.stream
http://grass.osgeo.org/wiki/GRASS_AddOns
http://grass.osgeo.org/wiki/GRASS_AddOns

5.3. GORDON GULCH DRAINAGE BASIN FROM SET POUR POINT 35

accurate representation of �ow paths, single �ow direction is needed for stream
pro�ling. We are also going to relax the threshold drainage area down to 10,000
cells (10,000 m2 = 100x100 meters). Let's do that now.

r.watershed elevation=topo accumulation=accum drainage=draindir basin=basins

stream=streams threshold=10000

r.thin input=streams output=streams_thinned

r.to.vect input=streams_thinned output=streams

r.to.vect input=basins output=basins feature=area

Now we have a set of single vector stream lines in the basin, each of which
represents a segment of the full river channel.

Where I have been using the threshold, I have been doing so in terms of
cells. But if your cell sizes vary, or you want to input real �ow contributions
from each cell, you can do that by setting the flow parameter in r.watershed

to the name of a raster map.
Let's cap our calculatory achievments by displaying the SFD streams on top

of the color shaded relief via the command line:

d.mon x0

d.vect -c map=basins_mfd type=boundary # These get confusing, but this is how

to display area boundaries

d.rgb r=colored_shaded_relief.r g=colored_shaded_relief.g b=colored_shaded_relief

.b

d.vect map=streams color=blue

5.3 Gordon Gulch drainage basin from set pour
point

We can use the GRASS r.water.outlet function to build basins from pour
points. In the next exercise, we will do that, along with vectorizing the resultant
drainage basin.

A pour point is the selected map location from which to calculate the up-
stream catchment area. This is given by the easting and northing values,
which I have typed here to be the outlet of Gordon Gulch, thus making us �nd
the largest basin on the map.

When we vectorize the drainage basin area, note that we have to clean the
topology by removing small (1-pixel) areas that are created along with the large
drainage basin. This sometimes happens when converting from raster to vector.
I use v.clean, a topology cleaning tool, to remove these small areas. If there
are small areas without centroids like these that you would actually want to
keep, you can try to add centroids to them with the v.centroids tool.

Gordon Gulch basin. Output: 1=inside basin; 0=outside basin

r.water.outlet easting=461795 northing=4429173 drainage=draindir basin=GGbasin

Set non-basin cells to NULL

r.null map=GGbasin setnull=0

Convert raster to vector: Use the "-s" flag if you want to smooth the vector

instead

flow
r.watershed
r.water.outlet
easting
northing
v.clean
v.centroids

36 CHAPTER 5. TOPOGRAPHIC AND HYDROLOGIC ANALYSES

of having rectangular pixel-shaped edges

r.to.vect in=GGbasin out=GGbasin feature=area

What? 4 areas created? But only 1 centroid?

Need to clean topology after raster conversion. All of the areas without

centroids are just one pixel, so we will use v.clean:

v.clean in=GGbasin out=tmp tool=rmarea thresh=1 --o

And now we will copy over our GGbasin vector file and remove "tmp",

all in one fell swoop, with "rename":

g.rename vect=tmp,GGbasin --o

Let's look at this in the GRASS graphical user interface. First, click on the
�add vector� button (Figure 5.4). Then follow the sequence of events in Figures
5.5, 5.6, and 5.7 to display the basin.

Figure 5.4: Click on this button to open a GUI d.vect dialog to display the
vector map and select display preferences.

This is all for now, but we go back to this drainage basin and these streams
in Chapter 6, in which we learn how to work with vector data and database
tables.

d.vect

5.3. GORDON GULCH DRAINAGE BASIN FROM SET POUR POINT 37

Figure 5.5: Select the vector to display. Then go through the tabs to show only
the boundary and make the line width be 2.

Figure 5.6: I've added our shaded relief map with topography draped over it
and a blue vector map of the streams (calculated with the SFD algorithm) to
my map along with the drainage basin.

38 CHAPTER 5. TOPOGRAPHIC AND HYDROLOGIC ANALYSES

Figure 5.7: In the display window of the GUI, I have added a North arrow and
scale bar.

5.4. SOLAR RADIATION 39

5.4 Solar radiation

Another important topographic analysis is solar radiation. GRASS GIS has a
r.sun module that does just this, with all the bells and whistles (direct, di�use,
and re�ected radiation, variable surface albedo, atmospheric conditions, etc.)

You will need to have run r.slope.aspect to get the slope and aspect in
decimal degrees as inputs to the solar radiation �le (Section 5.1).

The following is an example of r.sun usage. I haven't used it too much,
so I don't have too much to say about it, but it looks pretty powerful. The
help page (http://grass.fbk.eu/gdp/html_grass64/r.sun.html for GRASS
6.4.X) gives a pretty thorough description of it, as well as a nice bibliography
of the literature (largely solar energy papers) from which the r.sun developers
drew. The GRASS wiki page has more information: http://grass.osgeo.

org/wiki/R.sun. I've thought about linking it in with measured temperature
data: r.sun could help to obtain the upper boundary heat �ux, and could be a
way towards obtaining a realistic distributed thermal history for a region that
has limited point measurements.

lat~40, but we don't need this: GRASS knows where we are

This process may take several minutes, especially when you are running it for a

whole day!

r.sun -s elevin=topo aspin=aspect slopein=slope day=28 beam_rad=

beam_irradiation_day insol_time=insolation_time_day diff_rad=

diffuse_irradiation_day refl_rad=reflected_irradiation_day

Let's sum all of the three radiation types for the whole-day option, using the

map calculatior:

r.mapcalc "total_irradiation_day28 = beam_irradiation_day +

diffuse_irradiation_day + reflected_irradiation_day"

Given time - segfaults as with 6.4.1: fixed in newer versions (6.4.2 might be

release version now, so we could be safe on this)

Segfault also caused by including latitude as either value or raster

r.sun -s elevin=topo aspin=aspect slopein=slope lat=40 day=28 time=8.0 beam_rad=

beam_irradiance_0800 diff_rad=diffuse_irradiance_0800 refl_rad=

reflected_irradiance_0800

As a quick review of plotting with the addition of a legend, and an early
introduction to Bash scripting (Section 8.2) and �le I/O (Chapter 7), I am
going to run the following script to display and save images of all of the time
steps. I am also using a number of plotting bells and whistles as an example of
their usage. The output is given in Figure 5.8

d.mon x1 # start display monitor

start a for loop

for radrast in beam_irradiation_day diffuse_irradiation_day

reflected_irradiation_day total_irradiation_day28

do

"echo" is Bash's cute way of saying "print this to an output"; by default,

stdout = terminal window

"$" in Bash indicates that a variable should be evaluated; otherwise, it is

treated as itself

(e.g., radrast = radrast; $radrast = beam_irradiation_day)

r.sun
http://grass.fbk.eu/gdp/html_grass64/r.sun.html
r.sun
http://grass.osgeo.org/wiki/R.sun
http://grass.osgeo.org/wiki/R.sun
r.sun

40 CHAPTER 5. TOPOGRAPHIC AND HYDROLOGIC ANALYSES

echo $radrast

d.rast $radrast

d.title -ds map=$radrast

d.grid -gw size="0:01" color=white textcolor=black fontsize=16

d.legend map=$radrast color=black at=15,85,15,18

d.barscale bcolor=none at=0,93

save the image here

d.out.file -t output=$radrast format=png --o

sleep 1 # Take a look at it!

d.erase

done

Figure 5.8: Solar radiation maps for January 28th. Some of the features in the
standard GRASS output, like the grid and legend text, are thin and don't show
up well in this multi-color �gure. This is a weakness of the GRASS automated
displays.

5.5 Cosmogenic dating

One of the many things on my long to-do list is to create a GRASS GIS program
to obtain cosmogenic production rates. While I havne't even started coding this,
I'll say a little here about how I would do this in GRASS.

GRASS has a function called r.horizon. It gets the elevation of the horizon
from around a point on a DEM. This, coupled the elevation of the sample and

r.horizon

5.5. COSMOGENIC DATING 41

an atmospheric thickness function, should be able to give a production rate with
a global-uniform assumption. The point also has an (x, y) position. From this,
any spatial variability in cosmogenic production rates should be calculatable.

42 CHAPTER 5. TOPOGRAPHIC AND HYDROLOGIC ANALYSES

Chapter 6

Vectors and databases

6.1 Vector topology

In GRASS GIS, an �area� comprises a �boundary��a line that encloses it�and a
�centroid��a point within the area that shows on which side of the line the area
exists. Vector attributes for areas are attached to the centroids of these areas.
Boundaries are shared between areas, and have their own set of attributes: they
know about the areas on either side of them, their lengths, etc.

This is a �topological� paradigm for vector �les that prevents the slivers
and overlaps in vector �les that are common in shape�les. (I think that Ar-
c/Info had topologically correct features, but ArcDesktop stopped doing that,
possibly to make our lives more di�cult...) Anyway, Figure 6.1 shows the di�er-
ences between shape�les and the topological vectors that GRASS uses. The �g-
ures are from the GRASS Wiki, http://grass.osgeo.org/wiki/Digitizing_
Area_Features; this page has more information on vector topology.

Figure 6.1: GRASS maintains vector topology, with shared boundaries between
areas and individual areas de�ned by centroids. Figures from GRASS Wiki,
http://grass.osgeo.org/wiki/Digitizing_Area_Features.

43

http://grass.osgeo.org/wiki/Digitizing_Area_Features
http://grass.osgeo.org/wiki/Digitizing_Area_Features
http://grass.osgeo.org/wiki/Digitizing_Area_Features

44 CHAPTER 6. VECTORS AND DATABASES

Other aspects of GRASS vector topology are that points cannot overlap, and
lines should not cross or overlap. The whole point of this is to make sure that
there are not redundancies or ambiguities in the vecto data: careful preparation
of vector data sets can be hugely important for data processing and interpreta-
tion!

6.2 Managing databases and uploading vector at-
tributes

We will learn how to manage vector databases with the GGbasin vector created
in Section 5.3. This vector has only 1 area and no shared boundaries, so it is
the simplest possible starting point (aside from, well, a point).

My most-commonly used command is v.db.select. This command prints
the database values to the screen (or a �le), and optionally �lters them according
to a SQL queery. Try it out! When I do, this happens:

GRASS 6.4.1 (GordonGulch):~/grasstmp > v.db.select GGbasin

cat|value|label

1|1|

The category, �cat�, is a unique ID for each vector feature that starts at 1
and goes upward. �Value� is 1 from the conversion from raster. �Label� is empty,
because there was no label attached to the drainage basin raster.

Let's add the area of the drainage basin. To do this, we need to add a
column:

v.db.addcol map=GGbasin columns="area double precision"

Check it out: a new column is here!

GRASS 6.4.1 (GordonGulch):~/grasstmp > v.db.select GGbasin

cat|value|label|area

1|1||

Columns can be �double precision�, �int�, �varchar�, or �date�. Other types
exist as well, depending on the database manager being used, but I have never
had to use anything but the �rst three mentioned here.

To put a real value in this column, we must get the vector attribute (known
but hidden) into the database table. This uses the command v.to.db. Makes
sense, huh? Vector to database! I choose �units=k� for km2.

GRASS 6.4.1 (GordonGulch):~/grasstmp > v.to.db map=GGbasin opt=area columns=area

units=k

Reading areas...

100%

Updating database...

100%

1 categories read from vector map (layer 1)

1 records selected from table (layer 1)

1 categories read from vector map exist in selection from table

1 records updated/inserted (layer 1)

GGbasin
v.db.select
v.to.db

6.3. ADVANCED VECTOR AND DATABASE PROCESSING 45

GRASS 6.4.1 (GordonGulch):~/grasstmp > v.db.select GGbasincat|value|label|area

1|1||4.195303

There we go! This can be used to �nd neighbors, line slopes, perimeters,
and lots more fun stu�. Something I've thought about is writing a slope-area
calculation algorithm for a whole landscape... would be very do-able, but I just
haven't done it yet!

6.3 Advanced Vector and Database Processing

I thought about subtitling this section Streams (lines), Stream Segment
Endpoints (points), and Drainage Basins (areas). It could also be sub-
titled Manipulating Lines and Points, Using Databases, and File I/O.
So this may make it sound like a mixed bag, but it will make sense when it is
all done. The point of it is that we can do a lot of nifty stu� with lines, what
we've just learned about getting attribute values, and some basin piping of out-
put to extract drainage basins and/or get some pretty interesting landscape
characteristics.

6.3.1 Obtaining and cleaning points in stream networks

Back in Section 5.2, we created a set of vector lines for streams. Each of the
lines in this vector extends between the two nearest next tributary junctions,
the start of the river system (determined by the drainage threshold we selected),
and/or the edge of the map.

We can extract points from this vector using the v.to.points function. In
this case, I am setting the -n �ag to look just at the nodes (endpoints) of the
lines. The -v command would get all of the vertices of the line, and -i would
interpolate between these vertices.

v.to.points -n input=streams output=streams_endpoints

Multiple points at tributary junctions: let's clean the topology

v.clean in=streams_endpoints out=tmp tool=rmdupl

The current attribute tables do not represent our cleaned vector, so let's drop

them

v.db.droptable -f map=tmp layer=1

v.db.droptable -f map=tmp layer=2

We also caused categories to merge by removing duplicate points; let's

regenerate them in a nice, sequential list

v.category in=tmp out=tmp2 opt=del --o

v.category in=tmp2 out=tmp opt=add --o

And now we'll regenerate a new table with our new categories

v.db.addtable map=tmp # Adds a table with just the default "cat" column

Now that we're done, we will overwrite the input file

g.copy vect=tmp,streams_endpoints --o

I will now add the positions of those points with v.to.db, as well as their
elevations via queerying the raster map with v.what.rast. (Getting their lo-
cations probably won't be necessary, but it's good practice; note also that you

v.to.points
-n
-v
-i
v.to.db
v.what.rast

46 CHAPTER 6. VECTORS AND DATABASES

can use v.to.db to get the start and end points of lines directly, in a database
table that is attached to those lines. Cool, huh?)

v.db.addcol map=streams_endpoints columns="x double precision, y double precision

, z double precision"

v.to.db map=streams_endpoints col=x,y units=meters option=coor

v.what.rast vect=streams_endpoints rast=topo col=z

Run a quick v.db.select to check on your handiwork

v.db.select streams_endpoints

Some vector �les (not this one) have z-coordinates attached as well, meaning
that we could skip the v.what.rast step and just use col=x,y,z.

6.3.2 Queerying categories

Let's say we want to �nd only the point that we used to de�ne the major basin
of Gordon Gulch. This point should have the lowest of all of the values in our
vector categories�and indeed should likely have the lowest elevation of all the
points on the map.

Doing this requires making database queeries. Remember Section 3.2, way
back up top? This is where that becomes important. We de�ned our database
manager as SQLite, which is a useful subset of SQL (�Structured Queery Lan-
guage�), pronounced �sequel�. Honestly, I �nd SQL to be a total pain, but once
you understand its (rigid) structure and that it is better than the normal set of
database managers out there, you start to put up with it and use it.

SQL can be used to perform queeries. For example, to �nd the minimum
elevation from the set of stream endpoints and assign it to variable �zmin�, I
type:

zmin=`echo "SELECT MIN(z) from streams_endpoints" | db.select -c`

Without the "-c" flag, we would need this to cut off the column name:

zmin=${zmin:7:${#zmin}}

Now that we have this value, we can �nd the column that is associated with
this and save its x and y coordinates.

First, print it all

echo "SELECT * from streams_endpoints WHERE z=$zmin" | db.select

Then save the latitude and longitude

GGx=`echo "SELECT x from streams_endpoints WHERE z=$zmin" | db.select -c`

GGy=`echo "SELECT y from streams_endpoints WHERE z=$zmin" | db.select -c`

The commands with pattern db.* are the purely-databse-oriented queeries.
We can't do this �x = MIN(x)� queery in a single step because a SQL com-

mand that returns a single value like MIN() can't be used to queery whole
columns. See - sort of a pain! This is one way in which the GRASS Python
interface becomes useful: vector data can be ingested as lists, which are waaaay
more �exible and a lot less painful to use. But let's keep in 100% GRASS +
Bash to do the rest for now.

Now we can build our watershed from before using entirely vector outputs,
without having to pick (by hand) these values.

v.to.db
v.what.rast
col=x,y,z
db.*

6.3. ADVANCED VECTOR AND DATABASE PROCESSING 47

r.water.outlet easting=$GGx northing=$GGy drainage=draindir basin=GGbasinVARxy

... but if you go to display this raster, you'll �nd out that it is NOT our
big basin! We are looking at a small enough area that the normal assumption
that the biggest basin's outlet will have the lowest elevation won't always hold.
Interesting!

6.3.3 Extracting vector subsets

Let's use our big basin vector to extract only those streams that are within it.
We use v.select for this.

v.select ainput=streams binput=GGbasin operator=overlap output=GGstreams

Other useful commands that are like this are v.overlay, which combines
(overlays) two vector maps, and v.extract, which extracts a subset of a vector
map based on database queeries.

The output of this command can be produced in the display window (Figure
6.2):

d.mon x0

d.shadedmap reliefmap=shaded drapemap=topo brighten=15

d.vect map=GGstreams color=blue

d.vect map=GGbasin color=black type=boundary width=2

d.text -b size=8 text="Gordon Gulch Drainage" color=black font=romanc

d.barscale bcolor=none at=0,93

On viewing this, you might notice two tributaries that should �ow into the
downstream end of Gordon Gulch but don't: this is because of the road that
appears in the LiDAR. Look for it when you zoom in. Note that a segment of
the �stream� along the road ended up in the Gordon Gulch drainage by mistake!
We have to �x that. On the GUI, click the Queery command (Figure 6.3, select
either �display mode� (will be displayed in the GRASS terminal tab of your
layers, etc. window) or �edit� mode (will show up in a pop-up window), select
the �GGstreams� layer, and click on that segment. On my computer, this returns
cat:788. We want to get rid of this, so we use v.extract with the -r �ag to
invert our selection:

g.copy vect=GGstreams,GGstreams_pre_fix # make a backup first

v.extract -r in=GGstreams_pre_fix out=GGstreams where="cat=788" --o

Voilà: it's gone!
Now that you have just the streams inside this area, you should be able to

use them to generate slope-area relations, to compare with �eld data, and to
extract long pro�les from their starting points. We have seen that GRASS is
capable of all of these things on its own, but because of the clunkiness of SQL,
it may not be the easest way to do it. Therefore, I prefer to run these types of
analyses in Python (Section 8.3).

v.select
v.overlay
v.extract
cat : 788
v.extract
-r

48 CHAPTER 6. VECTORS AND DATABASES

Figure 6.2: Drainage from Gordon Gulch only.

Specifying pour point locations by intersections
You often want to know the draiange area above a point given by the
intersection of the stream and another linear feature (a road, a terrace
surface edge that is being incised, etc.). There is a neat little trick to
do this that is described in a few places online. The basic idea is to
combine the vector line �les and then use the topology tool v.clean to
�nd intersections between lines, and have its �error� output be points
that give the intersection locations. We then use these input positions as
variable inputs to r.water.outlet, with the help of a little scripting and
piping (see the GRASS Wiki link below and Section 8.2). Nifty! This is
described online in the following places:

� http://grass.osgeo.org/wiki/Creating_watersheds

� http://www.surfaces.co.il/?p=241

Box 6.1: Specifying pour point locations by intersections

v.clean
error
r.water.outlet
http://grass.osgeo.org/wiki/Creating_watersheds
http://www.surfaces.co.il/?p=241

6.3. ADVANCED VECTOR AND DATABASE PROCESSING 49

Figure 6.3: The mouse shows how to queery attributes interactively. The DEM
shows where the tributaries to Gordon Gulch are cut o� by the road in the
DEM. It is not immediately obvious to me whether or not culverts still connect
the real tributaries to the real mainstem. The blue polyline sitting by itself is an
artifact of drainage analysis with these roads: it is the piece of the now-blocked
Gordon Gulch tributary drainage that managed to live on the edge between
the Gordon Gulch and its would-be tributary basin boundaries, and therefore is
included in our nominally Gordon-Gulch-only subset of streams generated with
v.select.

v.select

50 CHAPTER 6. VECTORS AND DATABASES

Chapter 7

File input and output

File input and output is handled through a number of modules, depending on
the types of data and/or output desired.

7.1 Raster

At the very beginning of this manual (Section 4.1), we imported raster data
with r.in.gdal. This allows us to import any of the GDAL compatible raster
formats. r.in.ascii allows import of ASCII grids with GRASS headers. There
are a lot of input and output commands based on this same r.in.* or r.out.
* pattern, and they work for everything from SRTM data and ArcGIS grids
to Matlab *.mat �les to POV-RAY raytraceable �les to images (and lots in-
between).

GRASS 6.4.1 (GordonGulch):~ > r.in.

r.in.arc r.in.bin r.in.mat r.in.wms

r.in.ascii r.in.gdal r.in.poly r.in.xyz

r.in.aster r.in.gridatb r.in.srtm

GRASS 6.4.1 (GordonGulch):~ > r.out.

r.out.arc r.out.gdal.sh r.out.png r.out.tiff

r.out.ascii r.out.gridatb r.out.pov r.out.vrml

r.out.bin r.out.mat r.out.ppm r.out.vtk

r.out.gdal r.out.mpeg r.out.ppm3 r.out.xyz

We will practice �le input and output with the raster maps from Section
4.3.3. If we want to export these data to a �le, we need to �group� the .r, .g,
and .b components together. For this, we use the �group� command, which is
in the i.* image processing command set.

i.group group=colored_shaded_relief input=colored_shaded_relief.r,

colored_shaded_relief.g,colored_shaded_relief.b

Now we can export an image of the raster to a �le. I like PNG for images
because it can have transparency.

r.out.gdal in=colored_shaded_relief out=colored_shaded_relief.PNG format=PNG

51

r.in.gdal
r.in.ascii
r.in.*
r.out.*
r.out.*
*.mat
i.*

52 CHAPTER 7. FILE INPUT AND OUTPUT

Image processing
A large component of GIS work deals with image processing. Grass has
a large set of image processing commands that are listed as i.*. They
look pretty nifty to me, but I've never had need to use them. The same
principles of GRASS scripting that we have discussed so far apply to these
commands.

Box 7.1: Image processing

Note the message in which the precision of the output is changed to match what
PNG can handle.

Let's also output a real GIS format. You can type:

r.out.gdal -l

to get a list of all available formats.
Let's try an Erdas Imagine Image (.img):

r.out.gdal in=colored_shaded_relief out=colored_shaded_relief.img format=HFA

Finally, let's try to export an ASCII �le:

r.out.ascii in=colored_shaded_relief out=colored_shaded_relief.txt

Wait a minute: that didn't work! GRASS just told us:

ERROR: Raster map <colored_shaded_relief> not found

3-channel data can be stored in GDAL formats, but not in a single ASCII �le.
We don't have any raster that is called colored_shaded_relief: all we have
is the group that comprises the (r,g,b) triplet. All right - let's just export our
all-day solar intensity map instead:

r.out.ascii in=total_irradiation_day28 out=total_irradiation_day28.txt

Now that works. Note that r.out.ascii tends to take longer and make bigger
�les. ASCII is the easiest and most universal to read, but is usually also the
largest and clunkiest �letype.

This ASCII �le has a GRASS header, allowing it to be read back in and
providing georeferencing information. This header can be left out if you chose
the �-h� �ag. For the groundwater modelers, a �-m� �ag writes a MODFLOW-
compatible grid.

We'll skip �le input, but at this point, you know how the syntax should
work.

7.2 Vector

Vector I/O works in the same way as raster I/O. The vector I/O commands are:

i.*
colored_shaded_relief
r.out.ascii
-h
-m

7.3. GOOGLE EARTH 53

GRASS 6.4.1 (GordonGulch):~ > v.in.

v.in.ascii v.in.garmin v.in.lines v.in.sites

v.in.db v.in.geonames v.in.mapgen v.in.sites.all

v.in.dxf v.in.gns v.in.ogr v.in.wfs

v.in.e00 v.in.gpsbabel v.in.region

GRASS 6.4.1 (GordonGulch):~ > v.out.

v.out.ascii v.out.gpsbabel v.out.pov v.out.vtk

v.out.dxf v.out.ogr v.out.svg

v.out.ogr is very useful, because it covers all of the OGR formats. v.out.

ascii writes all of the vector values to a human-readable ASCII text �le. In
the place of v.out.ascii, I often pipe the output to a �le with v.db.select,
because this allows me to suppress header printing (if I want to) and choose a
subset of the data (matching a SQL queery, here to choose only the very highest
points).

v.db.select -c map=streams_endpoints fs=" " where="z > 2700" >

streams_endpoints_subset.txt

I have also changed the �eld separator from the default �|� to a space, which
is natively friendly with Numpy. You will read more about piping to �les in
Section 8.2.

The �gpsbabel� and �garmin� vector I/O options are very useful to me, be-
cause they let me insert my GPS points into GIS easily.

You can check out this stu� on your own: at this point, you know the syntax,
how to get help, etc...

7.3 Google Earth

Google Earth is a popular and easy-to-use digital globe. You can export lat/lon
raster and vector data to it. In this section, we will learn how to reproject data
in GRASS and export it in a way that works with Google Earth.

7.3.1 Coordinate transformation to lat/lon

Open a new GRASS GIS session (you can exit this current one, GordonGulch,
if you feel like it), and create a new location called GordonGulchLL. Instead
of specifying a coordinate system based on a �le, as we did in Section 3.3, we
will set our coordinate system based on an EPSG code. Select EPSG code
4326 for WGS84: this is the unprojected latitude and longitude. Don't worry
about setting the region: we can do that by queerying our orignal GordonGulch
GRASS Location and �nding its boundaries in the new (lat/lon) coordinate
system. Once again, we'll be the only users of our GIS project, so we will work
in the �PERMANENT� mapset. Start GRASS again!

The tool that we will be using is r.proj. Let's �rst �nd out how our DEM,
topo, maps into lat/lon:

GRASS 6.4.1 (GordonGulchLL):~ > r.proj -p location=GordonGulch input=topo

v.out.ogr
v.out.ascii
v.out.ascii
v.out.ascii
v.db.select
GordonGulch
GordonGulchLL
GordonGulch
r.proj
topo

54 CHAPTER 7. FILE INPUT AND OUTPUT

Latitude and Longitude in GRASS
GRASS works much better in Lat/Lon than Arc: it can do �ow routing, its
ability to weight cells di�erently allows the �ow routing to be a function
of a variable cell area, and most of its other functions work as well. I
have on occasion broken things by crossing the 180 meridian, but the
GRASS developers have a one-liner to �x that, so I just inserted that into
the C source and recompiled the module. The beauty of an open-source,
completely modular GIS!

Box 7.2: Latitude and Longitude in GRASS

Input Projection Parameters: +proj=utm +no_defs +zone=13 +a=6378137 +rf

=298.257222101 +towgs84=0.000,0.000,0.000

Input Unit Factor: 1

Output Projection Parameters: +proj=longlat +no_defs +a=6378137 +rf=298.257223563

+towgs84=0.000,0.000,0.000

Output Unit Factor: 1

Input map <topo@PERMANENT> in location <GordonGulch>:

Source cols: 4490

Source rows: 2731

Local north: 40:01:44.806776N

Local south: 40:00:15.454626N

Local west: 105:30:00.726619W

Local east: 105:26:51.936402W

Now that we have this info, we can use it to de�ne our region:

g.region -p n=40:01:44.806776N s=40:00:15.454626N w=105:30:00.726619W e

=105:26:51.936402W rows=2731 cols=4490

Note from the output of this command that your E-W resolution is lower (more
degrees per cell) than your N-S resolution. This is because latitude and longitude
are not equal, and 1 degree of longitude at 40◦N is less than a degree of latitude
at 40◦N. You still have a regular 1-meter grid, and (if you didn't know it already)
discovered a major reason for map projections!

OK - enough blabbing. Let's import our topography grid, shaded relief map,
Gordon Gulch basin outline, and the streams within Gordon Gulch proper.
I'm going to do this inside for loops again, in Bash. The loops are totally
unnecessary, but are just to keep making you get used to Bash scripting (if you
aren't already). Educational research shows that giving sneak peeks of concepts
before they are formally introduced increases retention!

The output names default to the input ones

for rast in topo shaded

do

echo $rast

r.proj location=GordonGulch input=$rast

done

for vect in GGstreams GGbasin

C

7.3. GOOGLE EARTH 55

do

echo $vect

v.proj location=GordonGulch input=$vect

done

For the rasters, I did not specify an interpolation method, so it defaulted to
�nearest neighbor�. If we had used r.shaded.relief in lat/lon coordinates
instead of just importing �shaded�, we would have needed to specify the �units�
option to say that our vertical scale is meters.

Let's do a quick display to make sure that everything converted over cor-
rectly. I'm using the same commands that were used to generate Figure 6.2
(printed here again so you don't have to �ip back):

d.mon x0

d.shadedmap reliefmap=shaded drapemap=topo brighten=15

d.vect map=GGstreams color=blue

d.vect map=GGbasin color=black type=boundary width=2

d.text -b size=8 text="Gordon Gulch Drainage" color=black font=romanc

d.barscale bcolor=none at=0,93

Check out Figure 7.1 to see our projected map and how it di�ers from Figure
6.2.

Now that everything is imported, we are ready to send it out to Google
Earth!

7.3.2 Vector

Vector output to Google Earth is easy because KML is an OGR �le format.
Just use:

in general: v.out.ogr format=kml ...

in particular, for our files:

v.out.ogr input=GGstreams dsn=GGstreams.kml type=line format=KML

v.out.ogr input=GGbasin dsn=GGbasin.kml type=boundary format=KML # just the basin

edge

For vector input and output, you use �dsn� (data source name) to refer to the
vector �les, instead of �input� or �output� (whichever the �le happens to be �
output in this case).

Place the output in the googleearth folder that came with this manual;
this will let you have all of your raster and vector outputs in the same place.

7.3.3 Raster

Raster Export

We will output our raster as a PNG �le, because this preserves transparency in
those nodata regions (instead of making ugly white splotches). First, we will
have to follow the procedure outlined in Sections 4.3.3 and 7.1 to blend and
group the topography�shaded relief combination into a RGB raster.

r.shaded.relief
shaded
units
googleearth

56 CHAPTER 7. FILE INPUT AND OUTPUT

Figure 7.1: Gordon Gulch in latitude and longitude. Note that there is some
whitespace at the edge of the map due to the coordinate transformation into
a geographic coordinate system (from a projected one), and that the location
looks smooshed in the vertical direction. Now think about this every time you
use Google Maps, which is just lat/lon: N-S distances look shorter there than
they really are, and by a not-so-insigni�cant amount!

r.blend first=topo second=shaded output=colored_shaded_relief percent=40

i.group group=colored_shaded_relief input=colored_shaded_relief.r,

colored_shaded_relief.g,colored_shaded_relief.b

Then we use what we learned in Section 7.1 to output this into a single, nice,
PNG �le with transparency preserved:

r.out.gdal in=colored_shaded_relief out=GordonGulchMap.PNG format=PNG

I haven't found a way in r.out.gdal to make transparent areas. But the
output of r.out.gdal is white only where it should be transparent, so I use
ImageMagick. If you haven't used ImageMagick before, it is 100% worth getting:
very easy command line / batch processing of images. Anyway, here's what I
do:

mv GordonGulchMap.PNG GordonGulchMap_OpaqueOrig.PNG

convert -fuzz 3% -transparent white GordonGulchMap_OpaqueOrig.PNG GordonGulchMap.

PNG

r.out.gdal
r.out.gdal

7.3. GOOGLE EARTH 57

We now add one additional step. Because our blended output was a PNG,
it has no georeferencing information. To �x this, we can use r.out.png one one
of the color channels to produce a �world �le�: an ASCII �le that geolocates our
image. This is necessary for a Google Earth import.

r.out.png -tw colored_shaded_relief.b

Then copy the world �le such that the �lename of the copied version corresponds
to the blended raster that you want to import.

cp colored_shaded_relief.b.wld GordonGulchMap.wld

After you do this once, you'll know how world �les are formatted, so you can
just create them on your own. You can also just go to Wikipedia (http://
en.wikipedia.org/wiki/World_file) and learn all you'd ever want to know
about them right o� the bat! Of course, once you read that, you'll realize that
rotation is possible, so that whole transparency thing should have been a non-
issue... but I really don't know anything about generating rasters that aren't in
a N-S-W-E orientation, so we're stuck with this for now! The good news can be
that if you are working entirely in geographic coordinates, you won't ever have
to worry about the transparency issue.

Google Earth Tiling

Rasters need to be tiled for Google Earth. I've included a Python script that
does this. This script, gdal2tiles.py is a standard part of the GDAL library.
It should be in the googleearth folder that accompanies this manual. We'll
write our output to that folder as well.

To run the Python script, you will need to have Python 2.X and (almost
certainly) Numpy on your computer. You might also need PIL, the Python
Imaging Library. There are also programs with nice graphical interfaces that
act as wrappers to gdal2tiles.py. I haven't used them as much, but MapTiler
seems pretty good (http://www.maptiler.org/; review / notes at https://
alastaira.wordpress.com/2011/07/11/maptiler-gdal2tiles-and-raster-resampling/).
We'll go forward in a scripting sort of way though, since I'm sure you can work
your way through a GUI!

If you type

python gdal2tiles.py --help

or ./gdal2tiles.py --help

if it is executable

and/or execute the script without any arguments, you get a description of how
to run it.

We are going to run it now, and send the output to a subfolder of googleearth.
This is what this looks like on my computer; you can see that I have created a
�grasstmp� folder for the outputs we have created thus far.

r.out.png
http://en.wikipedia.org/wiki/World_file
http://en.wikipedia.org/wiki/World_file
gdal2tiles.py
googleearth
gdal2tiles.py
http://www.maptiler.org/
https://alastaira.wordpress.com/2011/07/11/maptiler-gdal2tiles-and-raster-resampling/
https://alastaira.wordpress.com/2011/07/11/maptiler-gdal2tiles-and-raster-resampling/

58 CHAPTER 7. FILE INPUT AND OUTPUT

awickert@Cordilleran:~/Documents/geology_docs/courses/GRASS/googleearth$./

gdal2tiles.py -t "Gordon Gulch LiDAR" -k ~/grasstmp/GordonGulchMap.PNG ./

GordonGulchLidarMap

Generating Base Tiles:

0...10...20...30...40...50...60...70...80...90...100 - done.

Generating Overview Tiles:

0...10...20...30...40...50...60...70...80...90...100 - done.

The �les are organized into levels of zoomed-out-ed-ness; this makes it easier
on the computer as you zoom in and out of the region. The KML �le created
is named, by default, �doc.kml�. I want it to be more speci�c, so I change that:

mv GordonGulchLidarMap/doc.kml GordonGulchLidarMap/GordonGulchLiDAR.kml

The �le structure as it looks on my computer can be seen in Figure 7.2.

Figure 7.2: The Google Earth �les are organized in a hierarchical folder struc-
ture, with a vector KML �le that is loaded by Google Earth and indexes them.

You probably noticed that there are lots of other options for gdal2tiles.py
that can be used to put the images on web servers, etc. I've never used them,
but I bet they could be pretty great for outreach work, making data available
to other researchers or the public, etc.

7.3.4 Import into Google Earth

Your raster and vector outputs should now all be prepared (2 vector, 1 raster)
and sit within your googleearth folder. Good? OK.

gdal2tiles.py
googleearth

7.3. GOOGLE EARTH 59

Open Google Earth. Go to File → Open, and navigate to your �les. Click
on them and watch them appear in your map! [Hey - Google Earth even zooms
you straight in to Gordon Gulch!]

The vector �les will need some love to stop being that uniform spindly red.
Right-click on the vector layers in your left-hand panel in Google Earth, go to
the second tab [Style, Color], and click �share style�. This way Google Earth
knows that it can apply a consistent color scheme to all of these vector objects.
Give the vectors your desired color and width. They sure can look nice!

Figure 7.3: Above: top-down view of vector map. Below: perspective view of
raster and vector data with 3× vertical exaggeration. Don't you feel like you're
a scientist from the movies, zooming through a mission-critical landscape?

60 CHAPTER 7. FILE INPUT AND OUTPUT

Chapter 8

Writing and Executing

Scripts

8.1 Text editors for programming

You will want a good basic text editor for programming. These will highlight
and color the portions of the code according to their purpose, and (especially if
you haven't programmed before) will make understanding what you are doing
much more intuitive. The text editors I have used (or heard good things about)
are:

� Windows: notepad++

� Mac: TextWrangler and gedit

� Linux: gedit (comes pre-installed)

8.2 Shell scripting (Bash)

Bash is an old language that is very nice for creating quick-and-dirty scripts to
automate tasks. This section provides an introduction to Bash, some informa-
tion on regular expressions, and how information can be piped to and from �les
to make the scripts run.

for file in *.txt

do

echo $file

done

Create an empty file calld "fnames.txt": this is what the ">"

without any content on the left side of the ">" does

> fnames.txt

for file in *.txt

61

62 CHAPTER 8. WRITING AND EXECUTING SCRIPTS

do

Append new lines with all of the file names you find

">>" means append to file; ">" means create file

Here, you are "piping" the output of "echo" into

the file fnames.txt, instead of having it appear

in the standard output (i.e. the terminal window)

echo $file >> fnames.txt

done

Inside a GRASS environment, we can use GRASS commands here. Let's
start by exporting a list of the raster �les that we have:

Get a full list of GRASS raster files, and pipe it to "rasters.txt"

g.list rast > rasters.txt

Use the vi (or your preferred) text editor to look at the �le.

vi rasters.txt

As you can see, it isn't formatted in a nice way, with each entry on its own line.
(Press �:q�, then �ENTER� to exit when you are done viewing.) This calls for
a tool called sed, which can parse regular expressions. We will do a lot of �nd
and replace commands with sed.

First, let's remove the �rst, second and last lines:

cp rasters.txt rasters.txt.backup # backup copy is good!

sed -i '1 d' rasters.txt # Replace first line with nothing

sed -i '1 d' rasters.txt # Replace second line with nothing (it is now the 1st

line!)

sed -i '$ d' rasters.txt # Replace last line with nothing

Now, let's replace the spaces (any number of them) with newline characters,
and then remove blank lines that would be read as supposed raster names.

sed -i 's/ \+/\n/g' rasters.txt # Turns the spaces into newlines, and your data

into a single column!

sed -i '/^$/d' rasters.txt # Removes blank lines

Use vi or another text editor to admire your handiwork!

Now, let's display all of these in order... wait, maybe that isn't a good idea...
if you get bored of the display of all of your raster maps, press CTRL+C to
stop the process.

d.mon x0 # start a display monitor

Then get the values of the lines

while read line

do

echo $line # print raster name to screen

d.rast $line # display that raster!

sleep 2 # wait two seconds

d.erase # Erase the monitor

done < rasters.txt # Pipe in the text file for reading

vi
sed
sed
vi

8.3. PYTHON SCRIPTING 63

8.3 Python scripting

This section won't be written for some time, but this is how I write most of my
large GRASS programs. It allows much easier handling of variables, especially
in lists and arrays, than Bash scripting. It also has some nice plotting utili-
ties which can produce really pretty �gures (Matplotlib's basemap, made by a
scientist at NOAA here in Boulder).

Information on Python scripting can be found on the GRASS wiki at:

� http://grass.osgeo.org/wiki/GRASS_and_Python

� http://grass.osgeo.org/wiki/GRASS_Python_Scripting_Library

� http://grass.osgeo.org/wiki/Converting_Bash_scripts_to_Python

These sources are fairly comprehensive and link to additional sources of infor-
mation. This is a major reason why I am in no hurry to write this section:
good information exists, and once you know GRASS and Python, all you need
to know are the Python modules to import and the syntax to access GRASS
functionality. These Wiki articles comprise most (almost all?) of what I know
(and some more besides: I hadn't seen some of these articles before writing this
paragraph, and some have seen signi�cant overhaul in recent weeks/months),
and link to the rest of what I use.

The Wiki documentation is skimpy on vector handling (Python is still fairly
new to GRASS), but the Python API is largely built, so I have used infor-
mation from the GRASS programmer's manual (a useful resource in general)
to work through these issues. See http://grass.osgeo.org/programming6/

namespacepython_1_1vector.html for the GRASS 6.5 version. I still haven't
found a way to write data to GRASS vectors from Python data structures: I
can use Python to run the standard GRASS vector commands, though.

The full GRASS Progammer's Manual (6.5, but similar to 6.4, and easily
found via a web search) is http://grass.osgeo.org/programming6/pythonlib.
html (here open to the Python section, but with access to the whole thing vis-
ible).

Python scripting has also provided me with a way to run my numerical
models in a geospatially-registered environment. This is great, because it means
that my model results can be compared instantly with real-world data. To get a
taste of both GRASS Python scripting and model integration, check out a copy
of my �exural isostasy model from the CSDMS subversion repository:

svn co https://csdms.colorado.edu/svn/flexure

Go to flexure/trunk and look at r.flexure.py. It's still a little rough as
of when I'm writing this manual (16 April 2012), but hey � it works � and it
can be a sign of greater things to come!

http://grass.osgeo.org/wiki/GRASS_and_Python
http://grass.osgeo.org/wiki/GRASS_Python_Scripting_Library
http://grass.osgeo.org/wiki/Converting_Bash_scripts_to_Python
http://grass.osgeo.org/programming6/namespacepython_1_1vector.html
http://grass.osgeo.org/programming6/namespacepython_1_1vector.html
http://grass.osgeo.org/programming6/pythonlib.html
http://grass.osgeo.org/programming6/pythonlib.html
flexure/trunk
r.flexure.py

64 CHAPTER 8. WRITING AND EXECUTING SCRIPTS

Chapter 9

Wrap-up

9.1 Thoughts from the Author

I hope that this manual has been useful to you. Please let me know if there is
anything that needs to be �xed, if you'd want to help and/or expand it in any
way, or if you have other questions or suggestions. I really hope that this helps
you to be more e�cient at the computer, be able to do more insightful analyses
in a shorter period of time, and avoid paying sky-high fees for Arc and bursting
into tears as it crashes and burns and takes your day of work with it.

The open-source community in Earth-surface processes is growing, as exem-
pli�ed by projects like the Community Surface Dynamics Modeling System (CS-
DMS). As geomorphologists, sedimentologists, land-use dynamicists, and other
Earth-surface scientists, we are increasingly able to model complex natural sys-
tems, and our capacity for �eld data collection continues to grow. Combining
our work into a GIS�especially an open-source GIS like GRASS that has its
own community with goals that are not so di�erent from those that many Earth-
surface scientists have�is a way I see into the future of data�model integration
that will allow us to better predict future events and expain the Earth's past.

This manual has been an entirely free-time project to introduce the geomor-
phic community to an open-source, highly-automatable GIS and some of the
neat things you can do with it. As such, I won't always be able to answer all
questions in a timely manner, but I really, really promise that I will try.

Happy geospatial adventures to all of you!

�Andy, 16 April 2012

65

66 CHAPTER 9. WRAP-UP

9.2 Useful Resources

For more information and/or further exploration of open source GIS, check out
the following (some of which I have mentioned in the text):

� Markus Neteler and Helena Mitasova, 2008, Open Source GIS: A GRASS

GIS Approach. Third Edition. http://www.grassbook.org/

� the GRASS GIS Wiki, http://grass.osgeo.org/wiki/GRASS-Wiki

� The Open Source Geospatial Foundation, http://www.osgeo.org/, where
you can download the software, learn about it, and

� the main GRASS GIS website, http://grass.osgeo.org/

� Quantum GIS, a nice open-source point-and-click GIS that can plug in to
GRASS as an attractive front-end: http://www.qgis.org/

9.3 Future Plans

This section is mostly for the author, but it is written in the text so readers can
have an idea of what to (maybe) expect:

1. Compilation instructions, �les with c�ags, etc.

2. Geomorphic Python examples and some general Python background

3. Code from speci�c projects and/or codes that I have written to do generally-
useful tasks (e.g., regional-scale stream pro�les, terrace identi�cation)

4. CSDMS and GRASS � but I need to work with CSDMS �rst to see if I can
create a generic GRASS wrapper for their interfaces, and I would need to
have time to do that...

5. Write a LaTeX environment to make boldface monospaced font typeset
instead of co-opting the URL

6. Add a section on interpolating data going from point clouds to grids, and
LiDAR processing

7. Remote sensing: learn it, or talk to someone who knows it, and then write
about it

http://www.grassbook.org/
http://grass.osgeo.org/wiki/GRASS-Wiki
http://www.osgeo.org/
http://grass.osgeo.org/
http://www.qgis.org/

9.4. CONTACT INFORMATION 67

9.4 Contact Information

Andy Wickert
University of Colorado

Department of Geological Sciences and
Institute of Arctic and Alpine Research

Street / package address 1560 30th Street
Boulder, CO 80303

Mailing (non-packages) address Campus Box 450
Boulder, CO 80309-0450

E-mail: wickert@colorado.edu
Permanent forwarding email: awickert@alum.mit.edu
(because I'm graduating from CU soon-ish... right, Bob?)

wickert@colorado.edu
awickert@alum.mit.edu

	Introduction
	GIS
	What is GRASS?
	GRASS Interfaces
	Topology
	File structure

	Downloading and Installing GRASS
	Ubuntu (should work for Debian too)
	Mac OS X
	Windows 7
	Native Install
	Unix oriented

	Starting GRASS and Creating a Location
	Starting GRASS
	Database manager
	Creating a Location: Gordon Gulch
	Starting a GRASS GIS session

	Basic Raster Display and Region Operations
	Importing GDAL Raster Data
	Viewing and setting the region
	Displaying Raster Data
	Simple raster display with the command line
	Displaying raster (elevation and shaded relief) maps in the graphical interface
	Combining rasters for display in the command line: elevation and shaded relief

	Topographic and hydrologic analyses
	Slope, aspect, and resampling
	Drainage Networks
	Gordon Gulch drainage basin from set pour point
	Solar radiation
	Cosmogenic dating

	Vectors and databases
	Vector topology
	Managing databases and uploading vector attributes
	Advanced Vector and Database Processing
	Obtaining and cleaning points in stream networks
	Queerying categories
	Extracting vector subsets

	File input and output
	Raster
	Vector
	Google Earth
	Coordinate transformation to lat/lon
	Vector
	Raster
	Import into Google Earth

	Writing and Executing Scripts
	Text editors for programming
	Shell scripting (Bash)
	Python scripting

	Wrap-up
	Thoughts from the Author
	Useful Resources
	Future Plans
	Contact Information

